Gym 100814C Connecting Graph 并查集+LCA
Description
Statements
Alex is known to be very clever, but Walter does not believe that. In order to test Alex, he invented a new game. He gave Alex nnodes, and a list of queries. Walter then gives Alex one query every second, there are two types of queries:
means: adding an undirected edge between nodes u and v.
means: what was the earliest time (query index) when u and v became connected? 2 nodes are connected if there is a path of edges between them. Alex can solve this problem easily, but he is too busy now, so he is asking for your help.
Input
The first line contains an integer T, the number of test cases. Each test case begins with a line containing two integers (1 ≤ n, m ≤ 105), the number of nodes and queries, respectively. Then there are m lines, each line represents a query and contains three integers,type, u and v ( , 1 ≤ u, v ≤ n)
Output
For each query of type 2, print one line with one integer, the answer to the query. If the 2 nodes in the query are not connected, print -1.
Sample Input
1
4 5
1 1 2
2 1 2
1 2 3
2 1 3
2 1 4
1
3
-1
Hint
Warning: large Input/Output data, be careful with certain languages.
2016寒假训练04C,赛后补的:题意是给出m中操作,分别是1, u, v,既节点u,v之间连一条边,2, u, v即询问是最早是第几次操作使得u,v联通
可以用并查集维护连通性,如果(u, v)已经联通,那么对于操作1,(u,v)就不再连边,这样对于每一个联通块得到的是一颗树,所有的联通块对应于森林
维护mx[u][i]表示节点u到其第2^i个祖先之间边权的最大值,这样在查询lca的时候就能得到u, v之间路径的最大边权,就是对应于2的答案
#include <bits/stdc++.h>
using namespace std;
const int N = ;
const int DEG = ;
typedef pair<int, int> pii;
int head[N], tot;
struct Edge {
int v, w, next;
Edge() {}
Edge(int v, int w, int next) : v(v), w(w), next(next) {}
}e[N << ];
struct Query {
int u, v, w;
Query() {}
Query(int u, int v, int w) : u(u), v(v), w(w) {}
}q[N];
int f[N][DEG + ], mx[N][DEG + ], fa[N], deg[N];
void init(int n) {
for(int i = ; i <= n; ++i) fa[i] = i;
memset(head, -, sizeof head);
tot = ;
}
void add(int u, int v, int w) {
e[tot] = Edge(v, w, head[u]);
head[u] = tot++;
}
int find(int x) {
return fa[x] == x ?
x : fa[x] = find(fa[x]);
}
void BFS(int rt) {
queue<int> que;
deg[rt] = ;
f[rt][] = rt;
mx[rt][] = ;
que.push(rt);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < DEG; ++i) {
f[u][i] = f[f[u][i - ]][i - ];
mx[u][i] = max(mx[u][i - ], mx[f[u][i-]][i-]);
}
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
int w = e[i].w;
if(v == f[u][]) continue;
deg[v] = deg[u] + ;
f[v][] = u;
mx[v][] = w;
que.push(v);
}
}
}
int getmx(int u, int v) {
if(deg[u] > deg[v]) swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v, res = ;
for(int det = hv - hu, i = ; det; det >>= , ++i) {
if(det & ) { res = max(res, mx[tv][i]); tv = f[tv][i]; }
}
if(tu == tv) return res;
for(int i = DEG - ; i >= ; --i)
{
if(f[tu][i] == f[tv][i]) continue;
res = max(res, mx[tu][i]);
res = max(res, mx[tv][i]);
tu = f[tu][i];
tv = f[tv][i];
}
return max(res, max(mx[tu][], mx[tv][]));
}
int main() {
int _; scanf("%d", &_);
while(_ --)
{
int n, m;
scanf("%d%d", &n, &m);
int u, v, t, num = , res;
init(n);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &t, &u, &v);
if(t == ) {
int fu = find(u);
int fv = find(v);
if(fu == fv) continue;
fa[fu] = fv;
add(u, v, i);
add(v, u, i);
}else {
q[num++] = Query(u, v, i);
}
}
for(int i = ; i <= n; ++i) if(fa[i] == i) {
BFS(i);
} for(int i = ; i < num; ++i) {
if(q[i].u == q[i].v) puts("");
else {
int fu = find(q[i].u);
int fv = find(q[i].v);
if(fu != fv) puts("-1");
else {
res = getmx(q[i].u, q[i].v);
printf("%d\n", res > q[i].w ? - : res);
}
}
}
}
}
Gym 100814C Connecting Graph 并查集+LCA的更多相关文章
- Codeforces Gym 100814C Connecting Graph 树剖并查集/LCA并查集
初始的时候有一个只有n个点的图(n <= 1e5), 现在进行m( m <= 1e5 )次操作 每次操作要么添加一条无向边, 要么询问之前结点u和v最早在哪一次操作的时候连通了 /* * ...
- hdu 2874 Connections between cities (并查集+LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu6074[并查集+LCA+思维] 2017多校4
看了标答感觉思路清晰了许多,用并查集来维护全联通块的点数和边权和. 用另一个up[]数组(也是并查集)来保证每条边不会被重复附权值,这样我们只要将询问按权值从小到大排序,一定能的到最小的边权和与联通块 ...
- Network-POJ3694并查集+LCA
Network Time Limit: 5000MS Memory Limit: 65536K Description A network administrator manages ...
- Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集
D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...
- HDU6074 Phone Call (并查集 LCA)
Phone Call Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Tota ...
- [并查集+LCA USACO18OPEN ] Disruption
https://www.luogu.org/problemnew/show/P4374 一看这道题就是一个妙题,然后题解什么树链剖分...珂朵莉树... 还不如并查集来的实在!我们知道并查集本来就是路 ...
- Mobile Phone Network CodeForces - 1023F(并查集lca+修改环)
题意: 就是有几个点,你掌控了几条路,你的商业对手也掌控了几条路,然后你想让游客都把你的所有路都走完,那么你就有钱了,但你又想挣的钱最多,真是的过分..哈哈 游客肯定要对比一下你的对手的路 看看那个便 ...
- Codeforces 336D Dima and Trap Graph 并查集
Dima and Trap Graph 枚举区间的左端点, 然后那些左端点比枚举的左端点小的都按右端点排序然后并查集去check #include<bits/stdc++.h> #defi ...
随机推荐
- 后台弹出JS类
using System; using System.Collections.Generic; using System.Text; using System.Web; using System.We ...
- 【2016-08-21】Linux内核版本编号规则简介
我们已经了解可以使用下面的几天命令来查看Linux内核版本及Ubuntu发行版本的信息: uname -r uname -a cat /proc/version lsb-release -a 等等 可 ...
- Elo rating system 模拟
package org.cc.foo_008; import java.util.ArrayList; import java.util.List; import java.util.Random; ...
- PostgreSQL中COUNT的各条件下(1亿条数据)例子
test=# insert into tbl_time1 select generate_series(1,100000000),clock_timestamp(),now(); INSERT 0 1 ...
- Java Web基础——Action+Service +Dao三层的功能划分
1. Action/Service/DAO简介: Action是管理业务(Service)调度和管理跳转的. Service是管理具体的功能的. Action只负责管理,而Service负责实施. D ...
- memarch
memached 是一个高性能的分布式对象缓存系统,用于动态web应用以减轻数库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态数据驱动网站的速度.memcached基于一个存储 ...
- C++ 基础 const放在函数末尾的意思
- TortoiseSVN常用批处理命令 分类: C# 2014-08-09 11:31 648人阅读 评论(1) 收藏
TortoiseSVN作为源代码管理软件,估计用过的都会说好,在Windows下,配合批处理命令,往往可以事半功倍,整理了下常用的批处理命令: (将下面的内容修改后,保存为*.bat文件执行即可) : ...
- 第十九篇:提高SOUI应用程序渲染性能的三种武器
SOUI是一套100%开源的基于DirectUI的客户端开发框架. 基于DirectUI设计的UI虽然UI呈现的效果可以很炫,但是相对于传统的win32应用程序中每个控件一个窗口句柄的形式,渲染效率是 ...
- Effective C++ 之 Item 5:了解C++默默编写并调用哪些函数
Effective C++ chapter 2. 构造 / 析构 / 赋值运算 (Constructors, Destructors, and Assignment Operators) Item 5 ...