Java对象的分配,根据其过程,将其分为快速分配和慢速分配两种形式,其中快速分配使用无锁的指针碰撞技术在新生代的Eden区上进行分配,而慢速分配根据堆的实现方式、GC的实现方式、代的实现方式不同而具有不同的分配调用层次。 
下面就以bytecodeInterpreter解释器对于new指令的解释出发,分析实例对象的内存分配过程:

 一、快速分配

  1.实例的创建首先需要知道该类型是否被加载和正确解析,根据字节码所指定的CONSTANT_Class_info常量池索引,获取对象的类型信息并调用is_unresovled_klass()验证该类是否被解析过,在创建类的实例之前,必须确保该类型已经被正确加载和解析。

 CASE(_new): {
u2 index = Bytes::get_Java_u2(pc+);
constantPoolOop constants = istate->method()->constants();
if (!constants->tag_at(index).is_unresolved_klass()) {

  2.接下来获取该类型在虚拟机中的表示instanceKlass(具体可以参考前文实例探索Java对象的组织结构) 

oop entry = constants->slot_at(index).get_oop();
assert(entry->is_klass(), "Should be resolved klass");
klassOop k_entry = (klassOop) entry;
assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
instanceKlass* ik = (instanceKlass*) k_entry->klass_part();

  3.当类型已经被初始化并且可以被快速分配时,那么将根据UseTLAB来决定是否使用TLAB技术(Thread-Local Allocation Buffers,线程局部分配缓存技术)来将分配工作交由线程自行完成。TLAB是每个线程在Java堆中预先分配了一小块内存,当有对象创建请求内存分配时,就会在该块内存上进行分配,而不需要在Eden区通过同步控制进行内存分配。

if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
size_t obj_size = ik->size_helper();
oop result = NULL;
// If the TLAB isn't pre-zeroed then we'll have to do it
bool need_zero = !ZeroTLAB;
if (UseTLAB) {
result = (oop) THREAD->tlab().allocate(obj_size);
}
if (result == NULL) {
need_zero = true;

  4.如果不使用TLAB或在TLAB上分配失败,则会尝试在堆的Eden区上进行分配。Universe::heap()返回虚拟机内存体系所使用的CollectedHeap,其top_addr()返回的是Eden区空闲块的起始地址变量_top的地址,end_addr()是Eden区空闲块的结束地址变量_end的地址。故这里compare_to是Eden区空闲块的起始地址,new_top为使用该块空闲块进行分配后新的空闲块起始地址。这里使用CAS操作进行空闲块的同步操作,即观察_top的预期值,若与compare_to相同,即没有其他线程操作该变量,则将new_top赋给_top真正成为新的空闲块起始地址值,这种分配技术叫做bump-the-pointer(指针碰撞技术)。

  

 retry:
HeapWord* compare_to = *Universe::heap()->top_addr();
HeapWord* new_top = compare_to + obj_size;
if (new_top <= *Universe::heap()->end_addr()) {
if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
goto retry;
}
result = (oop) compare_to;
}
}

  5.根据是否需要填0选项,对分配空间的对象数据区进行填0

if (result != NULL) {
// Initialize object (if nonzero size and need) and then the header
if (need_zero ) {
HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
obj_size -= sizeof(oopDesc) / oopSize;
if (obj_size > ) {
memset(to_zero, , obj_size * HeapWordSize);
}
}

  6.根据是否使用偏向锁,设置对象头信息,然后设置对象的klassOop引用(这样对象本身就获取了获取类型数据的途径)

if (UseBiasedLocking) {
result->set_mark(ik->prototype_header());
} else {
result->set_mark(markOopDesc::prototype());
}
result->set_klass_gap();
result->set_klass(k_entry);

  7.把对象地址引入栈,并继续执行下一个字节码

SET_STACK_OBJECT(result, );
UPDATE_PC_AND_TOS_AND_CONTINUE(, );

  8.若该类型没有被解析,就会调用InterpreterRuntime的_new函数完成慢速分配

// Slow case allocation
CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
handle_exception);
SET_STACK_OBJECT(THREAD->vm_result(), );
THREAD->set_vm_result(NULL);
UPDATE_PC_AND_TOS_AND_CONTINUE(, );

以上就是快速分配的过程,其流程图如下,关键在于快速分配在Eden区所使用的无锁指针碰撞技术

    

 二、慢速分配

  接下来看看慢速分配是如何进行的: 
  1.InterpreterRuntime的_new函数定义在/hotspot/src/share/vm/interpreter/interpreterRuntime.cpp中:

IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index))
klassOop k_oop = pool->klass_at(index, CHECK);
instanceKlassHandle klass (THREAD, k_oop); // Make sure we are not instantiating an abstract klass
klass->check_valid_for_instantiation(true, CHECK); // Make sure klass is initialized
klass->initialize(CHECK); oop obj = klass->allocate_instance(CHECK);
thread->set_vm_result(obj);
IRT_END

  该函数在进行了对象类的检查(确保不是抽象类)和对该类型进行初始化后,调用instanceKlassHandle的allocate_instance进行内存分配。 
  其中instanceKlassHandle类由DEF_KLASS_HANDLE宏进行声明,注意该类重载了成员访问运算符”->”,这里的一系列成员方法的访问实际上是instanceKlass对象的访问。

 type*    operator -> () const       { return (type*)obj()->klass_part(); }

  2.所以实际上是调用了instanceKlass的allocate_instance()成员函数: 
  allocate_instance()定义在/hotspot/src/share/vm/oops/instanceKlass.cpp 
  (1).检查是否设置了Finalizer函数,获取对象所需空间的大小

instanceOop instanceKlass::allocate_instance(TRAPS) {
bool has_finalizer_flag = has_finalizer(); // Query before possible GC
int size = size_helper(); // Query before forming handle.

  (2).调用CollectedHeap的obj_allocate()创建一个instanceOop(堆上的对象实例),并根据情况注册Finalizer函数

    KlassHandle h_k(THREAD, as_klassOop());

      instanceOop i;

      i = (instanceOop)CollectedHeap::obj_allocate(h_k, size, CHECK_NULL);
if (has_finalizer_flag && !RegisterFinalizersAtInit) {
i = register_finalizer(i, CHECK_NULL);
}
return i;

  3.CollectedHeap::ojb_allocate()定义在/hotspot/src/share/vm/gc_interface/CollectedHeap.hpp中,它将转而调用内联函数obj_allocate()

  4.obj_allocate()定义在/hotspot/src/share/vm/gc_interface/CollectedHeap.inline.h中,若当正处于gc状态时,不允许进行内存分配申请,否则将调用common_mem_allocate_init()进行内存分配并返回获得内存的起始地址,随后将调用post_allocation_setup_obj()进行一些初始化工作 

oop CollectedHeap::obj_allocate(KlassHandle klass, int size, TRAPS) {
//...assert
HeapWord* obj = common_mem_allocate_init(size, false, CHECK_NULL);
post_allocation_setup_obj(klass, obj, size);
NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
return (oop)obj;
}

  5.common_mem_allocate_init()分为两部分,将分别调用common_mem_allocate_noinit()进行内存空间的分配和调用init_obj()进行对象空间的初始化

HeapWord* CollectedHeap::common_mem_allocate_init(size_t size, bool is_noref, TRAPS) {
HeapWord* obj = common_mem_allocate_noinit(size, is_noref, CHECK_NULL);
init_obj(obj, size);
return obj;
}

  6.common_mem_allocate_noinit()如下: 
  (1).若使用了本地线程分配缓冲TLAB,则会调用allocate_from_tlab()尝试从TLAB中分配内存

  HeapWord* result = NULL;
if (UseTLAB) {
result = CollectedHeap::allocate_from_tlab(THREAD, size);
if (result != NULL) {
assert(!HAS_PENDING_EXCEPTION,
"Unexpected exception, will result in uninitialized storage");
return result;
}
}

  (2).否则会调用堆的mem_allocate()尝试分配

 

  bool gc_overhead_limit_was_exceeded = false;
result = Universe::heap()->mem_allocate(size,
is_noref,
false,
&gc_overhead_limit_was_exceeded);

  (3).统计分配的字节数

 if (result != NULL) {
//...
THREAD->incr_allocated_bytes(size * HeapWordSize);
return result;
}

  (4).否则说明申请失败,若在申请过程中gc没有超时,则抛出OOM异常

if (!gc_overhead_limit_was_exceeded) {
// -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
report_java_out_of_memory("Java heap space"); if (JvmtiExport::should_post_resource_exhausted()) {
JvmtiExport::post_resource_exhausted(
JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP,
"Java heap space");
} THROW_OOP_0(Universe::out_of_memory_error_java_heap());

  7.对象内存分配后的初始化过程包括两部分,一个是init_obj()完成对对象内存空间的对齐和填充,一个是post_allocation_setup_obj()对堆上的oop对象进行初始化。

  (1).init_obj():

void CollectedHeap::init_obj(HeapWord* obj, size_t size) {
assert(obj != NULL, "cannot initialize NULL object");
const size_t hs = oopDesc::header_size();
assert(size >= hs, "unexpected object size");
((oop)obj)->set_klass_gap();
Copy::fill_to_aligned_words(obj + hs, size - hs);
}

  hs就是对象头的大小,fill_to_aligned_words将对象空间除去对象头的部分做填0处理,该函数定义在/hotspot/src/share/vm/utilities/copy.h中,并转而调用pd_fill_to_aligned_words()。 
  pd_fill_to_aligned_words根据不同平台实现,以x86平台为例,该函数定义在/hotspot/src/cpu/x86/vm/copy_x86.h中:

static void pd_fill_to_words(HeapWord* tohw, size_t count, juint value) {
#ifdef AMD64
julong* to = (julong*) tohw;
julong v = ((julong) value << ) | value;
while (count-- > ) {
*to++ = v;
}
#else
juint* to = (juint*)tohw;
count *= HeapWordSize / BytesPerInt;
while (count-- > ) {
*to++ = value;
}
#endif // AMD64
}

  该函数的作用就是先将地址类型转换,然后把堆的字数转化为字节数,再对该段内存进行填值(value = 0)处理

  (2).post_allocation_setup_obj()调用了post_allocation_setup_common()进行初始化工作,然后调用post_allocation_notify()通知JVMTI和dtrace
  

void CollectedHeap::post_allocation_setup_obj(KlassHandle klass,
HeapWord* obj,
size_t size) {
post_allocation_setup_common(klass, obj, size);
assert(Universe::is_bootstrapping() ||
!((oop)obj)->blueprint()->oop_is_array(), "must not be an array");
// notify jvmti and dtrace
post_allocation_notify(klass, (oop)obj);
}

  post_allocation_setup_common()如下:

void CollectedHeap::post_allocation_setup_common(KlassHandle klass,
HeapWord* obj,
size_t size) {
post_allocation_setup_no_klass_install(klass, obj, size);
post_allocation_install_obj_klass(klass, oop(obj), (int) size);
}

  post_allocation_setup_no_klass_install()根据是否使用偏向锁,设置对象头信息等,即初始化oop的_mark字段。post_allocation_install_obj_klass()设置对象实例的klassOop引用,即初始化oop的_metadata(_klass/_compressed_klass)字段 。

  以上内容就是堆实现无关的慢速分配过程,其流程图如下:

        

 三、堆的分配实现

  1.mem_allocate将由堆的实现类型定义,以GenCollectedHeap为例:

HeapWord* GenCollectedHeap::mem_allocate(size_t size,
bool is_large_noref,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded) {
return collector_policy()->mem_allocate_work(size,
is_tlab,
gc_overhead_limit_was_exceeded);
}

  2.由之前分析,GenCollectedHeap根据用户配置有着不同的GC策略(默认的和配置UseSerialGC的MarkSweepPolicy、配置UseComcMarkSweepGC和UseAdaptiveSizePolicy的ASConcurrentMarkSweepPolicy、只配置UseComcMarkSweepGC的ConcurrentMarkSweepPolicy),但这里,对象内存空间的基本结构和分配的思想是一致的,所以统一由GenCollectorPolicy实现进行分代层级的对象分配操作,但具体的工作将交由各代的实现者来完成。

  GenCollectedPolicy的mem_allocate_work()函数如下: 
  (1).gch指向GenCollectedHeap堆,内存分配请求将循环不断地进行尝试,直到分配成功或GC后分配失败

HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded) {
GenCollectedHeap *gch = GenCollectedHeap::heap();
//...
// Loop until the allocation is satisified,
// or unsatisfied after GC.
for (int try_count = ; /* return or throw */; try_count += ) {

  对于占用空间比较大的对象,如果经常放在新生代,那么剩余的内存空间就会非常紧张,将可能会导致新生代内存垃圾回收的频繁触发。故若对象的大小超过一定值,那么就不应该分配在新生代。

   //...紧接上面部分
  HandleMark hm; // discard any handles allocated in each iteration // First allocation attempt is lock-free.
Generation *gen0 = gch->get_gen(); if (gen0->should_allocate(size, is_tlab)) {
result = gen0->par_allocate(size, is_tlab);
if (result != NULL) {
assert(gch->is_in_reserved(result), "result not in heap");
return result;
}
}

  若对象应该在新生代上分配,就会调用新生代的par_allocate()进行分配,注意在新生代普遍是采用复制收集器的,而内存的分配对应采用了无锁式的指针碰撞技术。

  (2).在新生代上尝试无锁式的分配失败,那么就获取堆的互斥锁,并尝试在各代空间内进行内存分配

unsigned int gc_count_before;  // read inside the Heap_lock locked region
{
MutexLocker ml(Heap_lock);
//...
bool first_only = ! should_try_older_generation_allocation(size); result = gch->attempt_allocation(size, is_tlab, first_only);
if (result != NULL) {
assert(gch->is_in_reserved(result), "result not in heap");
return result;
}

  其中should_try_older_generation_allocation()如下:

bool GenCollectorPolicy::should_try_older_generation_allocation(
size_t word_size) const {
GenCollectedHeap* gch = GenCollectedHeap::heap();
size_t gen0_capacity = gch->get_gen()->capacity_before_gc();
return (word_size > heap_word_size(gen0_capacity))
|| GC_locker::is_active_and_needs_gc()
|| gch->incremental_collection_failed();
}

  当进行gc前,新生代的空闲空间大小不足以分配对象,或者有线程触发了gc,或前一次的FullGC是由MinorGC触发的情况,都应该不再尝试再更高的内存代上进行分配,以保证新分配的对象尽可能在新生代空间上。

  attempt_allocation()实现如下:

HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
bool is_tlab,
bool first_only) {
HeapWord* res;
for (int i = ; i < _n_gens; i++) {
if (_gens[i]->should_allocate(size, is_tlab)) {
res = _gens[i]->allocate(size, is_tlab);
if (res != NULL) return res;
else if (first_only) break;
}
}
// Otherwise...
return NULL;
}

  即由低内存代向高内存代尝试分配内存

  (3).从各个代空间都找不到可用的空闲内存(或不应该在更高的内存代上分配时),如果已经有线程触发了gc,那么当各代空间还有virtual space可扩展空间可用时,将会尝试扩展代空间并再次尝试进行内存分配,有点在gc前想尽一切办法获得内存的意思。

if (GC_locker::is_active_and_needs_gc()) {
if (is_tlab) {
return NULL; // Caller will retry allocating individual object
}
if (!gch->is_maximal_no_gc()) {
// Try and expand heap to satisfy request
result = expand_heap_and_allocate(size, is_tlab);
// result could be null if we are out of space
if (result != NULL) {
return result;
}
}

  (4).否则各代已经没有可用的可扩展空间时,当当前线程没有位于jni的临界区时,将释放堆的互斥锁,以使得请求gc的线程可以进行gc操作,等待所有本地线程退出临界区和gc完成后,将继续循环尝试进行对象的内存分配

JavaThread* jthr = JavaThread::current();
if (!jthr->in_critical()) {
MutexUnlocker mul(Heap_lock);
// Wait for JNI critical section to be exited
GC_locker::stall_until_clear();
continue;
}

  (5).若各代无法分配对象的内存,并且没有gc被触发,那么当前请求内存分配的线程将发起一次gc,这里将提交给VM一个GenCollectForAllocation操作以触发gc,当操作执行成功并返回时,若gc锁已被获得,那么说明已经由其他线程触发了gc,将继续循环以等待gc完成

VM_GenCollectForAllocation op(size,
is_tlab,
gc_count_before);
VMThread::execute(&op);
if (op.prologue_succeeded()) {
result = op.result();
if (op.gc_locked()) {
assert(result == NULL, "must be NULL if gc_locked() is true");
continue; // retry and/or stall as necessary
}

  否则将等待gc完成,若gc超时则会将gc_overhead_limit_was_exceeded设置为true返回给调用者,并重置超时状态,并对分配的对象进行填充处理

    const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
const bool softrefs_clear = all_soft_refs_clear();
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
if (limit_exceeded && softrefs_clear) {
*gc_overhead_limit_was_exceeded = true;
size_policy()->set_gc_overhead_limit_exceeded(false);
if (op.result() != NULL) {
CollectedHeap::fill_with_object(op.result(), size);
}
return NULL;
}

  以上内容就是堆的实现相关、但代/GC实现无关的分配过程,其流程图归纳如下:

        

源码分析:Java对象的内存分配的更多相关文章

  1. JVM源码分析之堆外内存完全解读

    JVM源码分析之堆外内存完全解读   寒泉子 2016-01-15 17:26:16 浏览6837 评论0 阿里技术协会 摘要: 概述 广义的堆外内存 说到堆外内存,那大家肯定想到堆内内存,这也是我们 ...

  2. netty源码分析 - Recycler 对象池的设计

    目录 一.为什么需要对象池 二.使用姿势 2.1 同线程创建回收对象 2.2 异线程创建回收对象 三.数据结构 3.1 物理数据结构图 3.2 逻辑数据结构图(重要) 四.源码分析 4.2.同线程获取 ...

  3. JVM源码分析之警惕存在内存泄漏风险的FinalReference(增强版)

    概述 JAVA对象引用体系除了强引用之外,出于对性能.可扩展性等方面考虑还特地实现了四种其他引用:SoftReference.WeakReference.PhantomReference.FinalR ...

  4. 灵魂拷问:Java对象的内存分配过程是如何保证线程安全的?(阿里面试)

    JVM内存结构,是很重要的知识,相信每一个静心准备过面试的程序员都可以清楚的把堆.栈.方法区等介绍的比较清楚. 上图,是一张在作者根据<Java虚拟机规范(Java SE 8)>中描述的J ...

  5. JAVA | Java对象的内存分配过程是如何保证线程安全的?

    JAVA | Java对象的内存分配过程是如何保证线程安全的? 专注于Java领域优质技术,欢迎关注 作者 l Hollis 来源 l Hollis(ID:hollischuang) JVM内存结构, ...

  6. jvm源码解析java对象头

    认真学习过java的同学应该都知道,java对象由三个部分组成:对象头,实例数据,对齐填充,这三大部分扛起了java的大旗对象,实例数据其实就是我们对象中的数据,对齐填充是由于为了规则分配内存空间,j ...

  7. Spark源码分析之九:内存管理模型

    Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Sp ...

  8. [五]类加载机制双亲委派机制 底层代码实现原理 源码分析 java类加载双亲委派机制是如何实现的

      Launcher启动类 本文是双亲委派机制的源码分析部分,类加载机制中的双亲委派模型对于jvm的稳定运行是非常重要的 不过源码其实比较简单,接下来简单介绍一下   我们先从启动类说起 有一个Lau ...

  9. 深入源码分析Java线程池的实现原理

    程序的运行,其本质上,是对系统资源(CPU.内存.磁盘.网络等等)的使用.如何高效的使用这些资源是我们编程优化演进的一个方向.今天说的线程池就是一种对CPU利用的优化手段. 通过学习线程池原理,明白所 ...

随机推荐

  1. svn查看代码作者的命令

    svn blame **.java | grep ** svn查看代码作者的命令

  2. Android之alertDialog、ProgressDialog

    一.alertDialog 置顶于所有控件之上的,可以屏蔽其他控件的交互能力.通过AlertDialog.Builder创建一个AlertDialog,并通过setTittle(),setMesseg ...

  3. 安卓设备通过USB接口读取UVC摄像头权限问题

    libusb for Android================== Building:--------- To build libusb for Android do the following ...

  4. iOS 启动图那些坑

    当我们按照图片尺寸要求将所有的图片添加到工程中后,上传打包的工程时可能会出现一个问题:说工程中不存在启动图.但是我们明明已经导入启动图了,那么问题出在哪呢.我经过多次试验,发现压缩过后的图片作为启动图 ...

  5. GIT ON WINDOWS

    https://help.github.com/articles/generating-an-ssh-key/

  6. @keyframes

    通过 @keyframes 规则,您能够创建动画. @keyframes movelike{ from{right:1205px;} to{right:0px}} 创建动画的原理是,将一套 CSS 样 ...

  7. JSP显示不完全问题

    这个问题出现之后其实有点让我手足无措,因为根本不知道原因出在哪儿. 因为出现这个问题之后修改过一次代码,所以我以为是因为这次修改出现的问题. 但细想之下,这次的修改根本没有涉及到任何有关这方面的东西. ...

  8. Octopus系列之UploadValues异步上载

    不多说了直接上代码 public void ProcessRequest(HttpContext context) { context.Response.ContentType = "tex ...

  9. [转]CSS网页布局:div水平居中的各种方法

    http://jingyan.baidu.com/article/fa4125ac90a2a328ac70929e.html 在Web标准中的页面布局是使用Div配合CSS来实现的.这其中最常用到的就 ...

  10. macbook上实现MacOS+Windows8+Ubuntu三系统

    至于为什么要装win和linux就不说了,本文只解释安装过程. GPT vs MBR MacOS下装另外两个系统的一个基本问题是:硬盘使用GPT分区,它和常见的MBR分区是两个硬盘分区方式. 它们的主 ...