一、介绍

  OTSU算法也称最大类间差法,有时也称之为大津算法,被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用。它是按图像的灰度特性,将图像分成背景和前景两部分。背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。

二、公式推导:

  记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。

  则图像的总平均灰度为:u=w0*u0+w1*u1。

  前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式。

  可参照概率论课本上面的g的公式也就是下面程序中的sb的表达式。当方差g最大时,可以认为此时前景和背景差异最大,此时的灰度t是最佳阈值sb = w1*w2*(u1-u0)*(u0-u1)

三、算法实现:

unsafe public int GetThreshValue(Bitmap image)

{

BitmapData bd = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.WriteOnly, image.PixelFormat);

byte* pt = (byte*)bd.Scan0;

int[] pixelNum = new int[256];          //图象直方图,共256个点

byte color;

byte* pline;

int n, n1, n2;

int total;                              //total为总和,累计值

double m1, m2, sum, csum, fmax, sb;     //sb为类间方差,fmax存储最大方差值

int k, t, q;

int threshValue = 1;                    // 阈值

int step = 1;

switch (image.PixelFormat)

{

case PixelFormat.Format24bppRgb:

step = 3;

break;

case PixelFormat.Format32bppArgb:

step = 4;

break;

case PixelFormat.Format8bppIndexed:

step = 1;

break;

}

//生成直方图

for (int i = 0; i < image.Height; i++)

{

pline = pt + i * bd.Stride;

for (int j = 0; j < image.Width; j++)

{

color = *(pline + j * step);  //返回各个点的颜色,以RGB表示

pixelNum[color]++;            //相应的直方图加1

}

}

//直方图平滑化

for (k = 0; k <= 255; k++)

{

total = 0;

for (t = -2; t <= 2; t++)              //与附近2个灰度做平滑化,t值应取较小的值

{

q = k + t;

if (q < 0)                              //越界处理

q = 0;

if (q > 255)

q = 255;

total = total + pixelNum[q];    //total为总和,累计值

  }

//平滑化,左边2个+中间1个+右边2个灰度,共5个,所以总和除以5,后面加0.5是用修正值

pixelNum[k] = (int)((float)total / 5.0 + 0.5);

}

//求阈值

sum = csum = 0.0;

n = 0;

//计算总的图象的点数和质量矩,为后面的计算做准备

for (k = 0; k <= 255; k++)

{

//x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和

sum += (double)k * (double)pixelNum[k];

n += pixelNum[k];                    //n为图象总的点数,归一化后就是累积概率

}

fmax = -1.0;                            //类间方差sb不可能为负,所以fmax初始值为-1不影响计算的进行

n1 = 0;

for (k = 0; k < 255; k++)                  //对每个灰度(从0到255)计算一次分割后的类间方差sb

{

n1 += pixelNum[k];                   //n1为在当前阈值遍前景图象的点数

if (n1 == 0) { continue; }              //没有分出前景后景

n2 = n - n1;                          //n2为背景图象的点数

//n2为0表示全部都是后景图象,与n1=0情况类似,之后的遍历不可能使前景点数增加,所以此时可以退出循环

if (n2 == 0) { break; }

csum += (double)k * pixelNum[k];       //前景的“灰度的值*其点数”的总和

m1 = csum / n1;                        //m1为前景的平均灰度

m2 = (sum - csum) / n2;                //m2为背景的平均灰度

sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 - m2);   //sb为类间方差

if (sb > fmax)                         //如果算出的类间方差大于前一次算出的类间方差

{

fmax = sb;                             //fmax始终为最大类间方差(otsu)

threshValue = k;                       //取最大类间方差时对应的灰度的k就是最佳阈值

}

}

image.UnlockBits(bd);

image.Dispose();  

return threshValue;

}

Otsu algorithm的更多相关文章

  1. OpenCV图像的全局阈值二值化函数(OTSU)

    cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最 ...

  2. Opencv SkinOtsu皮肤检测

    void SkinRGB(IplImage* rgb, IplImage* _dst) { assert(rgb->nChannels == && _dst->nChann ...

  3. OpenCV图像的二值化

    图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出 ...

  4. OpenCV中对图像进行二值化的关键函数——cvThreshold()。

    函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* src, CvArr* dst, double threshold, doub ...

  5. EmguCV 阈值化

    一.public static double cvThreshold( IntPtr src, IntPtr dst, double threshold, double maxValue, //Max ...

  6. [转载+原创]Emgu CV on C# (四) —— Emgu CV on 全局固定阈值二值化

    重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也 ...

  7. Opencv实现图像的灰度处理,二值化,阀值选择

    前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多 ...

  8. S0.4 二值图与阈值化

    目录 二值图的定义 二值图的应用 阈值化 二值化/阈值化方法 1,无脑简单判断 opencv3函数threshold()实现 2,Otsu算法(大律法或最大类间方差法) OpenCV3 纯代码实现大津 ...

  9. 【OpenCV3】threshold()函数详解

    threshold()函数源码 double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxva ...

随机推荐

  1. css整理-03 文本

    缩进和水平对齐 缩进文本:text-indent 可以设置为负值 可以为所有块级元素应用,但无法应用到行内元素,图像之类的替换元素: 水平对齐: text-align left,center,righ ...

  2. WPF,解决Listbox,按住ListboxItem向下拖出Listbox,横向滚动条跑到最后。

    类似这种样式的控件,.,在横向滚动条隐藏的情况下有这样的问题.(横向滚动条显示的时候也会,,目前不知道怎么解决.) 因为这个控件偏移是利用ListBox的ItemsPanelTemplate模版里的S ...

  3. 比较全的JS checkbox全选、取消全选、删除功能代码

    看下面两种实现方法: JS checkbox 方法一: 复制代码 代码如下: function checkAll() { var code_Values = document.all['code_Va ...

  4. 每天一个linux命令---netstat

    中间件访问第三方服务,经常出现连不上的情况.可以增加监控,当出现异常的时候触发一些动作通知程序员 例如:  要在app 部署的主机上,应该登录 172.16.210.52 后运行  netstat - ...

  5. BZOJ3414 : Poi2013 Inspector

    二分答案,没有出现过的时刻没有用,可以进行离散化. 首先如果某个时刻出现多个人数,那么肯定矛盾. 然后按时间依次考虑,维护: $t$:剩余可选人数. $s$:现在必定有的人数. $cl$:往左延伸的人 ...

  6. 转载 r.js打包经验

    例子1 先是HTML页面 <!DOCTYPE html> <html>     <head>         <title>My App</tit ...

  7. android pcm

    Android.media package里包含声音录放的两个类AudioRecord和AudioTrack.前者用来录制,后者用来播放. 配置 pcm: int channel = AudioFor ...

  8. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

  9. 【wikioi】1041 Car的旅行路线

    题目链接 算法:最短路(数据弱,Floyd也能过) 惨痛的教训:此题我至少提交了20次,原因在于= =太草率和粗心了,看到那个多少组数据以为是城市的数量,导致数组开得小小的= =.(对不起,wikio ...

  10. Android -- 自定义ImageView(圆形头像)

    1.  原图