上一次,我介绍了一些数论知识

有了这些知识,我们就可以看懂RSA算法。这是目前地球上最重要的加密算法。

六、密钥生成的步骤

我们通过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢?

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

ed ≡ 1 (mod φ(n))

这个式子等价于

ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

17x + 3120y = 1

这个方程可以用"扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。

七、RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

p
q
n
φ(n)
e
d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

12301866845301177551304949
58384962720772853569595334
79219732245215172640050726
36575187452021997864693899
56474942774063845925192557
32630345373154826850791702
61221429134616704292143116
02221240479274737794080665
351419597459856902143413

它等于这样两个质数的乘积:

33478071698956898786044169
84821269081770479498371376
85689124313889828837938780
02287614711652531743087737
814467999489
×
36746043666799590428244633
79962795263227915816434308
76426760322838157396665112
79233373417143396810270092
798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八、加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓"加密",就是算出下式的c:

me ≡ c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

6517 ≡ 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

cd ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

27902753 ≡ 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,"加密--解密"的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

cd ≡ m (mod n)

因为,根据加密规则

me ≡ c (mod n)

于是,c可以写成下面的形式:

c = me - kn

将c代入要我们要证明的那个解密规则:

(me - kn)d ≡ m (mod n)

它等同于求证

med ≡ m (mod n)

由于

ed ≡ 1 (mod φ(n))

所以

ed = hφ(n)+1

将ed代入:

mhφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

mφ(n) ≡ 1 (mod n)

得到

(mφ(n))h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

(kp)q-1 ≡ 1 (mod q)

进一步得到

[(kp)q-1]h(p-1) × kp ≡ kp (mod q)

(kp)ed ≡ kp (mod q)

将它改写成下面的等式

(kp)ed = tq + kp

这时t必然能被p整除,即 t=t'p

(kp)ed = t'pq + kp

因为 m=kp,n=pq,所以

med ≡ m (mod n)

原式得到证明。

(完)

转自:http://songshuhui.net/archives/84947

RSA_RSA算法原理(二)的更多相关文章

  1. RSA_RSA算法原理(一)

    如果你问我,哪一种算法最重要?我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简 ...

  2. SSH原理与运用(一)和(二):远程登录 RSA算法原理(一)和(二)

    SSH原理与运用(一)和(二):远程登录  RSA算法原理(一)和(二) http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html ht ...

  3. MySQL(二)索引背后的数据结构及算法原理

    本文转载自CodingLabs,原文链接 MySQL索引背后的数据结构及算法原理 目录 摘要 一.数据结构及算法基础 1. 索引的本质 2. B-Tree和B+Tree 3. 为什么使用B-Tree( ...

  4. RSA算法原理

    一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA ...

  5. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  6. OpenGL学习进程(13)第十课:基本图形的底层实现及算法原理

        本节介绍OpenGL中绘制直线.圆.椭圆,多边形的算法原理.     (1)绘制任意方向(任意斜率)的直线: 1)中点画线法: 中点画线法的算法原理不做介绍,但这里用到最基本的画0<=k ...

  7. 支持向量机原理(四)SMO算法原理

    支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...

  8. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  9. GBDT算法原理深入解析

    GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...

随机推荐

  1. Solr入门之(5)配置文件schema.xml

    该配置文件中的标签:<fileTypes>.<fields>.<uniqueKey>.<copyField> fieldType说明 标签types中定 ...

  2. JavaScript - call(this)

    为什么使用call(this), 而不是直接使用(function(){})(); "use strict" function Foo() { (function() { cons ...

  3. less2

    less2 @base-color: #000; @fore-color: darken(@base-color, 50%); @back-color: lighten(@base-color, 50 ...

  4. android 入门-android Studio git配置

    以后在整理

  5. C++中引用(&)的用法和应用实例

    转自:http://www.cnblogs.com/Mr-xu/archive/2012/08/07/2626973.html 对于习惯使用C进行开发的朋友们,在看到c++中出现的&符号,可能 ...

  6. 调整vbox虚拟机下的linux全屏模式及分辨率

    >>Step1 在VirtualBox菜单栏中选择[设备]->[安装增强功能] >>Step2 点击右上角的[齿轮]图标,然后选择[Log Out],重新登录即可 lin ...

  7. 制作U盘启动系统盘

    下载ULtraISO,安装之后,先打开一个iso系统文件,然后选中菜单“启动”下的“写入硬盘映像”

  8. 遍历CallBack对象 和 HHIVE对象

    内核中有个PLIST_ENTRY CmpHiveListHead;CmpHiveListHead = &CMHIVE.HiveList; CMHIVE结构如下:kd> dt _CMHIV ...

  9. JSHint配置详解

    Also available on Github JSHint配置详解 增强参数(Enforcing Options) 本类参数设为true,JSHint会产生更多告警. bitwise 禁用位运算符 ...

  10. loadrunner统计字符串中指定字符出现的次数

    Action() { char *str="sdfas1,sdfsdf2,sdfsdfsdfdsf3,sdfsdfsdfsdfds4,fsdfdsf5,sdfdsfsd6,fsdfsd7sd ...