Abstract

We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an

  1. 1 Introduction

The problem of multiclass classification, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for

The standard method for

Another method for constructing

Knerr suggested combining these two-class classifiers with an “AND” gate. Friedman suggested a Max Wins algorithm: each

A significant disadvantage of the

  1. 2 Decision DAGs

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. A Rooted DAG has a unique node such that it is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes which have either

Definition 1Decision DAGs (DDAGs). Given a space

To evaluate a particular DDAG G on input evaluation path. The input

The DDAG is equivalent to operating on a list, where each node eliminates one class from the list. The list is initialized with a list of all classes. A test point is evaluated against the decision node that corresponds to the first and last elements of the list. If the node prefers one of the two classes, the other class is eliminated from the list, and the DDAG proceeds to test the first and last elements of the new list. The DDAG terminates when only one class remains in the list. Thus, for a problem with

The current state of the list is the total state of the system. Therefore, since a list state is reachable in more than one possible path through the system, the decision graph the algorithm traverses is a DAG, not simply a tree.

Decision DAGs naturally generalize the class of Decision Trees, allowing for a more efficient representation of redundancies and repetitions that can occur in different branches of the tree, by allowing the merging of different decision paths. The class of functions implemented is the same as that of Generalized Decision Trees, but this particular representation presents both computational and learning-theoretical advantages.

3 Analysis of Generalization

In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a Perceptron DDAG to be a DDAG with a perceptron at every node. Let

Theorem 1 Suppose we are able to classifya random

where

Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. Note that, in some situations, this bound may be pessimistic: the DDAG partitions the input space into polytopic regions, each of which is mapped to a leaf node and assigned to a specific class. Intuitively, the only margins that should matter are the ones relative to the boundaries of the cell where a given training point is assigned, whereas the bound in Theorem 1 depends on all the margins in the graph.

By the above observations, we would expect that a DDAG whose

Theorem 2 Suppose we are able to correctly distinguish class

where

Large Margin DAGs for Multiclass Classification的更多相关文章

  1. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  2. Andrew Ng机器学习 三:Multi-class Classification and Neural Networks

    背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5 ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  4. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  5. Multiclass Classification

    之前我们都是在Binary classification的基础上学习算法和知识. 如何使用Binary classification算法进行Multiclass classification呢? (一 ...

  6. [DeeplearningAI笔记]Multi-class classification多类别分类Softmax regression_02_3.8-3.9

    Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类( ...

  7. Multi-class Classification相关

    标签(空格分隔): 毕业论文 (OS: 最近在做关于多类分类的综述,但是搜索出来好多方向搞得自己云里雾里的,好吧,又是在下孤陋寡闻了.还是那句话,不知道不可怕,但一直不知道就很尴尬了.) one-cl ...

  8. Andrew Ng机器学习编程作业:Multi-class Classification and Neural Networks

    作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9 ...

  9. Large Margin Softmax Loss for Speaker Verification

    [INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...

随机推荐

  1. int(3)和int(10)的区别

    int(M) 在 integer 数据类型中,M 表示最大显示宽度.在 int(M) 中,M 的值跟 int(M) 所占多少存储空间并无任何关系. int(3).int(4).int(8) 在磁盘上都 ...

  2. 使用automake等命令自动生成Makefile文件 (转载)

    使用automake等命令自动生成Makefile文件   Linux下编程时,为了方便编译,往往使用Makefile文件自动完成编译,但是Makefile文件本身的书写十分复杂,规则很多.好在Lin ...

  3. [mysql] 记osx 10.10系统修改mysql root 密码

    http://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html亲测方法3,已成功重置密码.(感谢@非常,告诉我官网就有重置方法,网上 ...

  4. centos下安装yaf框架

    安装好php环境之后 安装扩展包 $yum install php-devel /usr/bin/ 就会出现phpize工具包 下载yaf-2.2.8.gz源文件,解压后,进入源文件 phpize [ ...

  5. 7 -- Spring的基本用法 -- 5...

    7.5 Spring容器中的Bean 7.5.1 Bean的基本定义和Bean别名 <beans.../>元素是Spring配置文件的根元素,该元素可以指定如下属性: default-la ...

  6. mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性

    timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下: 1.CURRENT_TIMESTAMP 当要向 ...

  7. IDE编辑器编码配置

    做跨平台开发时,大家用不同的IDE合作开发,最令人头疼的事就是各种乱码问题. 常用的IDE都支持utf-8编码和unix格式行尾'\n'. 1.XCODE设置文本编码及换行Xcode >> ...

  8. DevExpress实现为TextEdit设置水印文字

    本文实例展示了DevExpress实现为TextEdit设置水印文字的方法,是一个很实用的技巧.分享给大家供大家参考. 转自 http://blog.csdn.net/yh0503/article/d ...

  9. mysql 查询数据库表结构

    1. mysql> describe tmp_log; +----------+------------------+------+-----+---------+--------------- ...

  10. C#设置通过代理访问ftp服务器

    // 创建FTP连接 private FtpWebRequest CreateFtpWebRequest(string uri, string requestMethod) { FtpWebReque ...