Abstract

We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an

  1. 1 Introduction

The problem of multiclass classification, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for

The standard method for

Another method for constructing

Knerr suggested combining these two-class classifiers with an “AND” gate. Friedman suggested a Max Wins algorithm: each

A significant disadvantage of the

  1. 2 Decision DAGs

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. A Rooted DAG has a unique node such that it is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes which have either

Definition 1Decision DAGs (DDAGs). Given a space

To evaluate a particular DDAG G on input evaluation path. The input

The DDAG is equivalent to operating on a list, where each node eliminates one class from the list. The list is initialized with a list of all classes. A test point is evaluated against the decision node that corresponds to the first and last elements of the list. If the node prefers one of the two classes, the other class is eliminated from the list, and the DDAG proceeds to test the first and last elements of the new list. The DDAG terminates when only one class remains in the list. Thus, for a problem with

The current state of the list is the total state of the system. Therefore, since a list state is reachable in more than one possible path through the system, the decision graph the algorithm traverses is a DAG, not simply a tree.

Decision DAGs naturally generalize the class of Decision Trees, allowing for a more efficient representation of redundancies and repetitions that can occur in different branches of the tree, by allowing the merging of different decision paths. The class of functions implemented is the same as that of Generalized Decision Trees, but this particular representation presents both computational and learning-theoretical advantages.

3 Analysis of Generalization

In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a Perceptron DDAG to be a DDAG with a perceptron at every node. Let

Theorem 1 Suppose we are able to classifya random

where

Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. Note that, in some situations, this bound may be pessimistic: the DDAG partitions the input space into polytopic regions, each of which is mapped to a leaf node and assigned to a specific class. Intuitively, the only margins that should matter are the ones relative to the boundaries of the cell where a given training point is assigned, whereas the bound in Theorem 1 depends on all the margins in the graph.

By the above observations, we would expect that a DDAG whose

Theorem 2 Suppose we are able to correctly distinguish class

where

Large Margin DAGs for Multiclass Classification的更多相关文章

  1. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  2. Andrew Ng机器学习 三:Multi-class Classification and Neural Networks

    背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5 ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  4. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  5. Multiclass Classification

    之前我们都是在Binary classification的基础上学习算法和知识. 如何使用Binary classification算法进行Multiclass classification呢? (一 ...

  6. [DeeplearningAI笔记]Multi-class classification多类别分类Softmax regression_02_3.8-3.9

    Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类( ...

  7. Multi-class Classification相关

    标签(空格分隔): 毕业论文 (OS: 最近在做关于多类分类的综述,但是搜索出来好多方向搞得自己云里雾里的,好吧,又是在下孤陋寡闻了.还是那句话,不知道不可怕,但一直不知道就很尴尬了.) one-cl ...

  8. Andrew Ng机器学习编程作业:Multi-class Classification and Neural Networks

    作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9 ...

  9. Large Margin Softmax Loss for Speaker Verification

    [INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...

随机推荐

  1. javascript事件之:谈谈自定义事件(转)

    http://www.cnblogs.com/pfzeng/p/4162951.html 对于JavaScript自定义事件,印象最深刻的是用jQuery在做图片懒加载的时候.给需要懒加载的图片定义一 ...

  2. css3 文字过长用...代替

    white-space: nowrap; text-overflow: ellipsis; overflow: hidden; white-space:nowrap 代表多个空格/回车不换行: tex ...

  3. unity自带寻路Navmesh入门教程(二)

    上一节简单介绍了NavMesh寻路的基本用法,这次来介绍一下稍微复杂一点点的高低落差以及跳跃的做法,首先来看看这次的目标:   由于博客相册上传GIF有限制,所以我把整个过程切开了2部分上传,第一部分 ...

  4. List去重复(不是最简单,但绝对是最易理解)

    for (int i = 0; i < courselist.size(); i++) //外循环是循环的次数 { for (int j = courselist.size() - 1 ; j ...

  5. 兼容cookie和webStorage

    html页面     <!DOCTYPE html> <html lang="en"> <head>     <meta charset= ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. Android的常用adb命令

    第一部分:1. ubuntu下配置环境anroid变量:在终端执行 sudo gedit /etc/profile 打开文本编辑器,在最后追加#setandroid environment2. 运行E ...

  8. boost.asio与boost.log同时使用导致socket不能正常收发数据

    现象: 1. 没有使用boost.log前能正常收发数据 2.加入boost.log后async_connect没有回调 fix过程: 1. gdb调试发现程序block在pthread_timed_ ...

  9. Spring相关

    一.Spring中ApplicationContext加载机制加载器目前有两种选择:ContextLoaderListener和ContextLoaderServlet. 这两者在功能上完全等同,只是 ...

  10. 第一章 UI实战开发 UIWindow UIView

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...