DFS序详解
dfs序就是一棵树在dfs遍历时组成的节点序列.
它有这样一个特点:一棵子树的dfs序是一个区间.
下面是dfs序的基本代码:
void dfs(int x,int pre,int d){//L,R表示一个子树的范围
L[x]=++tot;
dep[x]=d;
for(int i=;i<e[x].size();i++){
int y=e[x][i];
if(y==pre)continue;
dfs(y,x,d+);
}
R[x]=tot;
}
给定一颗树, 和每个节点的权值.下面有7个经典的关于dfs序的问题:
1. 对某个节点X权值加上一个数W, 查询某个子树X里所有点权的和.
由于X的子树在DFS序中是连续的一段, 只需要维护一个dfs序列,用树状数组实现:单点修改和区间查询.
2. 对节点X到Y的最短路上所有点权都加一个数W, 查询某个点的权值.
这个操作等价于a. 对X到根节点路径上所有点权加W
b. 对Y到根节点路径上所有点权加W
c. 对LCA(x, y)到根节点路径上所有点权值减W
d. 对LCA(x,y)的父节点 fa(LCA(x, y))到根节点路径上所有权值减W
于是要进行四次这样从一个点到根节点的区间修改.将问题进一步简化, 进行一个点X到根节点的区间修改, 查询其他一点Y时,只有X在Y的子树内, X对Y的值才有贡献且贡献值为W.当单点更新X时,X实现了对X到根的路径上所有点贡献了W.于是只需要更新四个点(单点更新) ,查询一个点的子树内所有点权的和(区间求和)即可.
3. 对节点X到Y的最短路上所有点权都加一个数W, 查询某个点子树的权值之和.
同问题2中的修改方法, 转化为修改某点到根节点的权值加/减W
当修改某个节点A, 查询另一节点B时
只有A在B的子树内, Y的值会增加
W * (dep[A] - dep[B] + 1) => W * (dep [A] + 1) - W * dep[B]
那么我们处理两个数组就可以实现:
处理出数组Sum1,每次更新W*(dep[A]+1),和数组Sum2,每次更新W.
每次查询结果为Sum1(R[B]) – Sum1(L[B]-1) - (Sum2(R[B]) – Sum2(L[B]-1)) * dep [B].
4. 对某个点X权值加上一个数W, 查询X到Y路径上所有点权之和.
求X到Y路径上所有的点权之和, 和前面X到Y路径上所有点权加一个数相似
这个问题转化为
X到根节点的和 + Y到根节点的和 - LCA(x, y)到根节点的和 - fa(LCA(x,y)) 到根节点的和
更新某个点x的权值时,只会对它的子树产生影响,对x的子树的每个点到根的距离都加了W.
那么我们用”刷漆”(差分前缀和),更新一个子树的权值.给L[x]加上W,给R[x]+1减去W,那么sum(1~L[k])就是k到根的路径点权和.
5. 对节点X的子树所有节点加上一个值W, 查询X到Y的路径上所有点的权值和
同问题4把路径上求和转化为四个点到根节点的和
X到根节点的和 + Y到根节点的和 - LCA(x, y)到根节点的和 - parent(LCA(x,y)) 到根节点的
再用刷漆只更新子树.
修改一点A, 查询某点B到根节点时, 只有B在A的子树内, A对B才有贡献.
贡献为W * (dep[B] - dep[A] + 1) => W * (1 - dep[A]) + W * dep[B]
和第三题一样, 用两个sum1,sum2维护 W *(dep[A] + 1),和W.
最后答案就是sum2*dep[B]-sum1.
6. 对子树X里所有节点加上一个值W, 查询某个点的值.
对DFS序来说, 子树内所有节点加W, 就是一段区间加W.
所以这个问题就是 区间修改, 单点查询.树状数组+刷漆.
7.对子树X里所有节点加上一个值W, 查询某个子树的权值和.
子树所有节点加W, 就是某段区间加W, 查询某个子树的权值和, 就是查询某段区间的和
区间修改区间求和,用线段树可以很好解决.
DFS序详解的更多相关文章
- JS-排序详解:冒泡排序、选择排序和快速排序
JS-排序详解-冒泡排序 说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在 ...
- JS-排序详解-冒泡排序
说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...
- JS-排序详解-选择排序
说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...
- JS-排序详解-快速排序
说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...
- Hadoop(四)HDFS集群详解
前言 前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群.接下来这篇我详细的分享一下HDFS. HDFS前言: 设计思想:(分而治之)将大文件.大 ...
- adoop(四)HDFS集群详解
阅读目录(Content) 一.HDFS概述 1.1.HDFS概述 1.2.HDFS的概念和特性 1.3.HDFS的局限性 1.4.HDFS保证可靠性的措施 二.HDFS基本概念 2.1.HDFS主从 ...
- dfs序+RMQ求LCA详解
首先安利自己倍增求LCA的博客,前置(算不上)知识在此. LCA有3种求法:倍增求lca(上面qwq),树链剖分求lca(什么时候会了树链剖分再说.),还有,标题. 是的你也来和我一起学习这个了qwq ...
- 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)
参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...
- 【转】logback 常用配置详解(序)logback 简介
原创文章,转载请指明出处:http://aub.iteye.com/blog/1101222, 尊重他人即尊重自己 详细整理了logback常用配置, 不是官网手册的翻译版,而是使用总结,旨在更快更透 ...
随机推荐
- JavaScript由浅入深(一)——类型、值和变量
JavaScript是一门面向web的.高端的.动态的.弱类型的编程语言,是学习web前端开发必备的基础技能之一.JavaScript最初是一门脚本语言(scripting-language),它 ...
- 伪装的方式实现js继承
看起来属性放到"父类"里了,这种方式原型中还是有属性的,只不过在"子类"的构造器中用call方法调用父类构造函数的时候,"子类"被强行赋值了 ...
- Sprint 2(第一天)
Sprint 2计划会议: 目标: 1.实现用户模块的权限控制,能够进行用户登录的功能 2.对菜单模块实现增加菜单列表详情,修改菜单列表详情,删除菜单列表详情,查询菜单列表详情的功能 3.实现菜品分类 ...
- 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
- matlab初学之roundn和round
文章出处: http://evaevazhuxun.blog.sohu.com/154543859.html http://blog.sina.com.cn/s/blog_a4034b2801012o ...
- 服务器sh脚本自动登录(mac)
一不小心自己也有三台虚拟机了,每次都ssh -username@ip 然后在输入密码着实蛋疼,第一反应时脚本登录,但是作为脚本是逐行执行命令,是无法做到等待一个密码提示出现在输入密码的.查到mac下可 ...
- Android 与Unity交互之Toast消息
Toast.makeText(MainActivity.this,message.obj.toString(),Toast.LENGTH_SHORT).show();这一句代码不能直接放在 publi ...
- fatal error: Call to undefined function mysqli_connect()
在搭建PHP5.6+APACHE2.4+MYSQL5的平台时,测试是否成功连接mysql, 测试程序index.php <?php phpinfo() ?> 没有出现mysql的信息 所以 ...
- eclipse + marven
eclipse使用maven管理项目,可以自动下载依赖包(尤其是容易引起依赖包冲突的场合),也可以实现打jar包,编译等功能 1 eclipse安装maven插件 使用Eclipse--help-- ...
- 一、Android屏幕的计量单位
px :是屏幕的像素点in :英寸mm:毫米pt :磅,1/72英寸dp :一个基于density的抽象单位,如果一个160dpi的屏幕,1dp=1pxdip :等同于dpsp :同dp ...