今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的。拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍:

AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划和实施过程,一个工程常被分为多个小的子工程,这些子工程被称为活动(Activity),在有向图中若以顶点表示活动,有向边表示活动之间的先后关系,这样的图简称为AOV网。

说的简单点,AOV网就是表示一个工程中某些子项的先后顺序。就拿工地搬砖来说吧,只有砖厂送来砖,工人才能搬。那么砖厂送砖就是搬砖的前提。先这么一聊,下方会给出详细的介绍。废话少说进入今天的主题。

一、AOV网与拓扑排序

本篇博客我们先聊一下AOV网和拓扑排序的关系,下方是我们列举的一个非常简单的例子,当然下方的这个图就是一个简单的AOV图,麻雀虽小,五脏俱全。在下方的AOV图中,送砖和找人是并列的,先执行谁都行。不过搬砖的前提是即送完了砖也找完了人,然后就可以开始搬砖了,所以送砖和找人就是搬砖的前提。那么让搬砖这件事情顺利进行下去的顺序有"送砖->找人->搬砖"或者“找人->送砖->搬砖”这两个序列,而这两个序列都是拓扑序列。

  

生成“送砖->找人->搬砖”这个序列的过程我们称之为拓扑排序。如果非得说的官方和抽象点,那么还是引用拓扑排序的定义吧,下方就是拓扑排序的定义:

拓扑排序:对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

上面这个定义就比较抽象了,当然还是我们搬砖的例子好理解一些。在有向无环图中的结点如果有入度的话,那么就说明该结点优先级要低于那些可以到达改点的结点。而那些没有入度的结点的优先级就比较高,这些结点的完成不依赖与其他结点。这样说如果有些抽象的话,那么我们就看下方拓扑排序详细的示例图。

二、拓扑排序示意图

本部分我们将会给出拓扑排序详细的示意图。拓扑排序实现是依赖于栈与队列的数据结构,栈用来暂存那些入度为0的结点,而队列负责存储已经生成的拓扑序列。因为前几篇关于图的博客,我们都使用了相同的图结构。本篇博客也不例外,我们依然会使用之前的有向图,因为之前的图是有向无环图,所以是可以生成拓扑序列的。下方就是要生成拓扑序列的有向无环图。

在下方的有向无环图每个结点上有一个绿色的数字,该数字记录的就是该结点的入度。入度为零,那么该数字就是0,如果入度为1,那么该数字就是1。

  

下方是下图拓扑排序每一步的示意图。接下来我们将会给出下方每一步示意图的详细解说。

  • (1):首先将图中入度为0的结点入栈,因为此图中只有A结点的入度为0,所以我们将A入栈。

  • (2):将A从栈中Pop到我们的拓扑队列中,将那些以A发出的边为入度的结点的度数减一。对于此示例来说也就是将B和F入度减1. 因为B和F的入度数减一后成了0,所以也将B, F这两结点入栈。

  • (3):将F从栈中Pop到拓扑队列中,因为图中有F->G和F->E两条边,所以将G和E的入度数减一。因为E的入度数减一后为0,所以将E入栈。

  • (4):将E从栈中Pop到拓扑队列中,因为图中E->H和E->D两条边,所以讲H和D的两个结点的入度减一。两个结点减一操作后没有入度为零的节点,所以本步没有结点入栈。

  • (5):接着从栈中Pop结点到拓扑队列中,将B结点Pop出栈入拓扑队列。因为C、I、G结点与B相连,B添加进拓扑序列后,这三个结点的入度都减一。C和G的入度减一后为0,所以将其加入栈中。

  • (6):将C从栈中pop到拓扑队列中,与C相连的结点是I和D, 将这两个结点的入度减1。I的入度减一后为0,将其Push到栈中暂存。

  • (7):将I结点从栈中pop到拓扑队列中,D与I相连,将D的入度再次减一。本轮没有要入栈的结点。

  • (8):将G从栈中pop到拓扑队列中,G与H和D相连,将D与H的入度减一。H的入度减一操作后入度为零将其入栈。

  • (9):将H从站中pop到拓扑队列中,D与H相连,将D的入度减一,减一后为0,所以将D入栈。

  • (10):将D从栈中pop到拓扑队列中,此刻栈中为空,拓扑序列生成完毕。

  

  

上面这些步骤已经很详细了,上面这些步骤搞明白后,给出代码实现就简单多了。下方我们会给出具体的代码实现。

三、拓扑排序的代码实现

讲完概念和原理后,接下来我们就要开始实践了。本部分就会给出具体的代码实现,当然我们依然采用Swift语言来做。首先我们创建要依赖的队列和栈,然后再构建有向图的邻接链表,最后给出拓扑排序的代码实现。进入本部分的主题:

1.队列与栈

接下来我们就要实现拓扑序列生成时要使用的栈与队列,关于栈与队列本篇博客就不做过多的赘述了,因为我们之前已经对栈与队列做了详细的介绍。关于栈与队列更详细的内容请查看之前的博客《栈与队列的线性和链式表示(Swift面向对象版)》。

下方这段代码段就是我们本篇博客要使用的栈的类,当然是简化版的,也就是对Array做了一个简单的封装。栈中存储的数据类型是我们邻接链表的结点。具体代码如下所示。

  

下方则是我们存储拓扑序列的队列,当然也是基于Array的简单封装。

  

2.有向图的构建

接下来我们来创建我们的有向图。本篇博客所使用的有向图我们是使用邻接链表来表示的。下方这段代码段就是邻接链表的结点,当然在之前不知一篇博客中我们使用到了下方这个结点。本篇博客中的weightNumber不仅仅只存边的权值,在数组中的结点的weightNumber我们用来存储该结点的入度。

  

下方这段代码就是有向图的创建,在网邻接链表上挂入结点时,要讲被挂入的结点的入度加1即可。因为下方代码与之前图的创建的代码类似,在此就不做过多赘述了。

  

下方这两个截图则是上述代码段的输入和输出。根据输出的结果我们不难看出我们所创建的图就是一个有向图。

  

  

3、拓扑序列的生成

接下来就是我们本篇博客代码实现的核心了。我们将基于上面创建的AOV网来生成拓扑序列。其实下方生成拓扑序列的代码就是上述示例描述的具体实现。接下来我们将具体的说下下方这段拓扑排序的代码。主要概括起来分为下方三步:

  • (1):首先初始化我们所需要的栈,然后遍历AOV网中所有的结点,将入度为0的结点添加到我们的栈中暂存。

  • (2):循环将我们栈中的元素添加到拓扑队列中。每从栈中Pop出一个结点就把与该结点相连的结点的入度减1,如果减一后该结点的度数为0则将其入栈。然后继续下一轮的循环。

  • (3):当栈中没有暂存的结点后,说明拓扑序列生成完毕。如果拓扑队列中的元素要小于图结点的个数,那么说明图中存在环路,不能生成相应的拓扑序列。

  

下方截图就是我们之前创建的有向图所生成的拓扑序列,如下所示:

  

至此,我们本篇博客的内容也就结束了,下方依然是我们本篇博客所涉及Demo的分享链接,如下所示:

github分享链接:https://github.com/lizelu/DataStruct-Swift/tree/master/TopoLogicalSort

算法与数据结构(七) AOV网的拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序(Swift版)

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 算法与数据结构(八) AOV网的关键路径

    上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...

  3. 算法与数据结构(八) AOV网的关键路径(Swift版)

    上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...

  4. AOV网与拓扑排序

    在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network).AOV网中的弧表示活动 ...

  5. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  6. AOV图与拓扑排序&AOE图与关键路径

    AOV网:所有的工程或者某种流程可以分为若干个小的工程或阶段,这些小的工程或阶段就称为活动.若以图中的顶点来表示活动,有向边表示活动之间的优先关系,则这样活动在顶点上的有向图称为AOV网. 拓扑排序算 ...

  7. 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

    http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...

  8. 数据结构之---C语言实现拓扑排序AOV图

    //有向图的拓扑排序 //杨鑫 #include <stdio.h> #include <stdlib.h> #include <string.h> #define ...

  9. 【数据结构与算法Python版学习笔记】图——拓扑排序 Topological Sort

    概念 很多问题都可转化为图, 利用图算法解决 例如早餐吃薄煎饼的过程 制作松饼的难点在于知道先做哪一步.从图7-18可知,可以首先加热平底锅或者混合原材料.我们借助拓扑排序这种图算法来确定制作松饼的步 ...

随机推荐

  1. Angular2入门系列教程3-多个组件,主从关系

    上一篇 Angular2项目初体验-编写自己的第一个组件 好了,前面简单介绍了Angular2的基本开发,并且写了一个非常简单的组件,这篇文章我们将要学会编写多个组件并且有主从关系 现在,假设我们要做 ...

  2. 《Django By Example》第五章 中文 翻译 (个人学习,渣翻)

    书籍出处:https://www.packtpub.com/web-development/django-example 原作者:Antonio Melé (译者@ucag注:大家好,我是新来的翻译, ...

  3. 通俗易懂的来讲讲DOM

    DOM是所有前端开发每天打交道的东西,但是随着jQuery等库的出现,大大简化了DOM操作,导致大家慢慢的“遗忘”了它的本来面貌.不过,要想深入学习前端知识,对DOM的了解是不可或缺的,所以本文力图系 ...

  4. ABP教程-打造一个《电话簿项目》-目录-MPA版本-基于ABP1.13版本

    此系列文章会进行不定期的更新,应该会有6章左右. 感兴趣的朋友可以跟着看看,本教程适合已经看过ABP的文档但是又无从下手的小伙伴们. 初衷: 发布系列教程的原因是发现ABP在园子火了很久,但是发现还是 ...

  5. ABP文档 - 后台作业和工作者

    文档目录 本节内容: 简介 后台作业 关于作业持久化 创建一个后台作业 在队列里添加一个新作业 默认的后台作业管理器 后台作业存储 配置 禁用作业执行 Hangfire 集成 后台工作者 创建一个后台 ...

  6. Spark RDD 核心总结

    摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...

  7. css3线条围绕跑马+jquery打字机效果

    原文地址:css3线条围绕跑马+jquery打字机效果 有图有真相,今天偶然看到了一种效果,仔细看了下,发现它是用css的clip+css3的动画实现的,简直叼.于是自己拿来了前一阵子写的打字机效果, ...

  8. [WPF] Wait for a moment.

    一.控件介绍 在 WPF 中使用的等待控件,控件包括三种,普通的等待信息提示(WaitTip),进度条提示(WaitProgress),以及主程序覆盖的模拟时钟等待窗口(WaitClock),具体效果 ...

  9. python 数据类型 -- 元组

    元组其实是一种只读列表, 不能增,改, 只可以查询 对于不可变的信息将使用元组:例如数据连接配置 元组的两个方法: index, count >>> r = (1,1,2,3) &g ...

  10. H3 BPM引擎API接口

    引擎API接口通过 Engine 对象进行访问,这个是唯一入口. 示例1:获取组织机构对象 this.Engine.Organization.GetUnit("组织ID"); 示例 ...