佛洛依德 c++ 最短路径算法
//20142880 唐炳辉 石家庄铁道大学
#include<iostream>
#include<string>
using namespace std;
#define Maxnum 32767
#define N 100 typedef struct
{
string Dianarr[N];
string info[N];
int arcs[N][N];
int DianNum,BianNum;
}FloydStruct; int LocateVex(FloydStruct G, string a)
{
int i;
bool flag = ;
for(i = ;i < G.DianNum;i++)
if(a == G.Dianarr[i])
{
flag = ;
return i;
}
if(flag == )
{
return -;
}
}
void CreateUDN(FloydStruct &G)
{
cout << "请输入顶点数和边数:" << endl;
cin >> G.DianNum >> G.BianNum;
cout << "请输入顶点信息:" << endl;
for(int i = ;i<G.DianNum;i++)
cin >> G.Dianarr[i];
for(int i = ;i<G.DianNum;i++)
for(int j = ;j<G.DianNum;j++)
G.arcs[i][j] = Maxnum;
string v1,v2;
int w,i,j;
cout << "请输入存在路径的两个顶点和路径长度:" << endl;
for(int k = ;k<G.BianNum;k++)
{
cin >> v1 >> v2 >> w;
i = LocateVex(G,v1);//获取点的数组下标
j = LocateVex(G,v2);
G.arcs[i][j] = w;//权值赋值给两点
}
} int Path[N][N];
int D[N][N];
void Floyd(FloydStruct G) //佛洛依德
{
for(int i = ;i < G.DianNum;i++)
for(int j = ; j < G.DianNum;j++)
{
D[i][j] = G.arcs[i][j];
if(D[i][j]<Maxnum)
Path[i][j] = i;
else
Path[i][j] = -;
}
for(int k = ;k < G.DianNum;k++)/**核心**/
for(int i = ; i < G.DianNum;i++)
for(int j = ; j < G.DianNum;j++)
if(D[i][k] + D[k][j] < D[i][j])
{
D[i][j] = D[i][k] + D[k][j];
Path[i][j] = Path[k][j];
}
} void printFl(FloydStruct G) //输出
{
/*string a,b;
int i,j,font = 1;
cout << "请输入当前位置和要去位置:" << endl;
cin >> a >> b;
//显示最短路径 i = LocateVex(G,a);
j = LocateVex(G,b);
if(D[i][j]==Maxnum)
cout << "最短距离为:" << "不可达!"<< endl;
else
cout << "最短距离为:" << D[i][j]<< endl;*/
for(int i=;i<G.DianNum;i++)
{
for(int j=i+;j<G.DianNum;j++)
{ if(D[i][j]!=Maxnum)
{int q =; int j1=j;
int a[]={};
while()
{ if(Path[i][j1]!=i)
{ a[q]=j1=Path[i][j1]; q=q++; }
else
{
break;}
} cout<<G.Dianarr[i]<<"------>";
for(int p=q-;p>=;p--)
{
cout<<G.Dianarr[a[p]]<<"------>";
}
cout<<G.Dianarr[j]<< D[i][j]<< endl;
}
} }
//temp终点 } void main()
{
FloydStruct G;
CreateUDN(G);//生成邻接矩阵
Floyd(G);
printFl(G);
}
佛洛依德 c++ 最短路径算法的更多相关文章
- hdu 1217 Arbitrage(佛洛依德)
Arbitrage Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- 最短路径算法 1.Floyed-Warshall算法
这几周开始正式系统学习图论,新学期开始新的记录.由于二模和生物地理两门高考的临近,时间比较仓促,所以暂时跳过图论的(一)和(二),即图的储存和遍历.从最短路径算法学起,首先要学习的是Floyed-Wa ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 无向图的最短路径算法JAVA实现
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
随机推荐
- CLion 2016.2.2 注册激活码
43B4A73YYJ-eyJsaWNlbnNlSWQiOiI0M0I0QTczWVlKIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...
- LeetCode Coin Change
原题链接在这里:https://leetcode.com/problems/coin-change/ 题目: You are given coins of different denomination ...
- centos6.4 挂载新盘并移动mysql数据目录
1 centos 挂载新盘并格式化 以vmware workstation12 中安装的centos6. 虚拟机为例进行演示 关机,添加硬盘 开机,格式化硬盘,并挂载 通过命令查看硬盘 fdisk – ...
- 安装eclipse的hadoop开发环境--2
在eclipse上做好一切,在网上很容易搜到 尝试链接hadoop集群失败,尝试单机的操作,发现# ssh localhost失败 解决ssh问题:成功解决 但是eclipse的DFS locatio ...
- javascript获取当前url
在WEB开发中,许多开发者都比较喜欢使用javascript来获取当前url网址,本文就此为大家总结一下比较常用获取URL的javascript实现代码,以下示例是前面为相应实现方法,后面是获取URL ...
- linux-----------linux查看并发数
1.查看Web服务器(Nginx Apache)的并发请求数及其TCP连接状态:netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a ...
- python爬虫
预:网页的组成 HTML(结构)+css(样式)+javascript(功能) 爬虫主要针对的是HTML和css HTML: <div></div>div标签 代表网页中某个区 ...
- 开发Windows Phone应用程序之后的感觉
刚刚历时一个多月完成了酒美网(我之前的公司)Windows Phone版客户端,发现自己的自学能力还可以,但是还是有好多东西摸不清,到今天我才刚刚对MVVM入门,更对MVVMLight这个框架有进一步 ...
- java三大框架
1定义 集成SSH框架的系统从职责上分为四层:表示层.业务逻辑层.数据持久层和域模块层,以帮助开发人员在短期内搭建结构清晰.可复用性好.维护方便的Web应用程序.其中使用Struts作为系统的整体基础 ...
- 渗透日记-POST注入
今晚给一个网站做了一次入侵检测,首先进行信息刺探后,发现这个站有注入策略,所有页面都没法通过常规的注入,利用wvs扫描网站发现一个页面. 这个页面直接暴露出了错误信息,看了一下url没有参数却爆出了错 ...