This is a highly-cited paper. The context aware saliency proposed based on four principles, which can be explained as follows:

1. Areas that have distinctive colors or patterns should obtain high saliency;

2. Frequently occurring features should be suppressed;

3. The salient pixels should be grouped together and not spread over the image;

4. High-level factors such as priors on the salient object location and object detection are useful.

Steps:

1. Local global single-scale saliency.(Principle 1-3)

 is the euclidean distance between the positions of the two patches,  is the euclidean distance between the two patches in CIE L*a*b color space. This dissimilarity measure is proportional to the color difference and inversely proportional to the positional distance.

Finding the most K similar patches of the current patch centering at the current processed pixel and summing up, the single-scale saliency value is defined as above.

2. Multiscale saliency enhancement

For every patch of scale r, we search its neighboring patches who's scale range in {r, r/2, r/4}. Hence, the saliency of each pixel can be rewritten as :

Saliency map will be normalized to [0, 1]. Instead of just considering a single scale(r) of each patch, we represent each of them in multiscale(M scales for example). Then the saliency is :

3. Including the immediate context(principle 3)

The main purpose of this step is to take more attention to the area that are close to the foci of attention while attenuate those far away from.

To get the foci of attention, we set a threshold(0.8 in the paper) at each scale and its corresponding saliency map . Let  be the euclidean positional distance between pixel i and the closest focus of attention pixel at scale r, normalized to [0,1]. The saliency of pixel i is redefined as :

Here is the corresponding picture:

4. Center prior(principle 4)

To enhance those near to the image center while depress others.

5. High-level factors(principle 4)

For example, one could incorporate the face detection algorithm, which generates 1 for face pixels and 0 otherwise. The saliency map can then be modified by taking the maximum value of the saliency map and the face map. This part is excluded in this paper.

.

PAMI 2010 Context-aware saliency detection的更多相关文章

  1. paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

    1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...

  2. {Links}{Matting}{Saliency Detection}{Superpixel}Source links

    自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...

  3. [精读]Spationtemporal Saliency Detection Using Textural Contrast and Its Applications

    Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 ...

  4. Saliency Detection via Graph-Based Manifold Ranking

    Saliency Detection via Graph-Based Manifold Ranking https://www.yuque.com/lart/papers 本文不是按照之前的论文那样, ...

  5. Saliency Detection: A Spectral Residual Approach

    Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach ...

  6. 论文阅读:Review of Visual Saliency Detection with Comprehensive Information

    这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...

  7. 视觉显著性检测(Visual saliency detection)相关概念

    视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...

  8. 显著性检测(saliency detection)评价指标之sAUC(shuffled AUC)的Matlab代码实现

    AUC_shuffled.m function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, st ...

  9. 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现

    calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...

随机推荐

  1. asp.net mvc js 获取model值。

    cshtml页面部分代码: div class="col-sub">          @using (Html.BeginForm("SaveTTMallConf ...

  2. T-SQL中的随机数

    SQL开发中会有生成随机数的需求,下面说几种常用的需求和解决办法(基于MS SQL),最后总结出通用的办法: 1.0-9间的随机整数,包括0和9本身: abs(checksum(newid()))%1 ...

  3. 长年承接AR图像识别项目,关于高速UnityARCam多图问题技术整理

    //关于高通ARCameraQCARBehaviour script下 Max Simultneous Image QCARBehaviour script下 Max Simultneous Imag ...

  4. Net操作Excel(终极方法NPOI)

    NPOI 待学习 http://www.cnblogs.com/stone_w/archive/2012/08/02/2620528.html

  5. not子查询中有null值的时候 not in 会失效

    not in子查询中有null值的时候 not in 会失效 但是 in 的子查询中有null的 不会失效

  6. spring 官方下载地址(Spring Framework 3.2.x&Spring Framework 4.0.x)

    spring官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径: h ...

  7. The server encountered an internal error that prevented it from fulfilling this request.

    type Exception report message Request processing failed; nested exception is org.mybatis.spring.MyBa ...

  8. mongodb配置文件

    启动MongoDB有2种方式,一是直接指定配置参数,二是指定配置文件.这里先介绍配置文件,启动方式如下: 1.mongod --config /etc/mongodb.conf 配置如下: verbo ...

  9. Hololens缩放物体源码(待完善)

    using UnityEngine; using System.Collections; public class ScaleQuad : MonoBehaviour { public GameObj ...

  10. Linux常用命令集合

    常用的Linux命令,备忘 1 pwd 显示当前目录 命令格式: pwd [选项] 2 cd 更换目录 命令格式: cd [目录名] 例: 3 ls 显示当前目录内容 命令格式: ls [选项] [目 ...