This is a highly-cited paper. The context aware saliency proposed based on four principles, which can be explained as follows:

1. Areas that have distinctive colors or patterns should obtain high saliency;

2. Frequently occurring features should be suppressed;

3. The salient pixels should be grouped together and not spread over the image;

4. High-level factors such as priors on the salient object location and object detection are useful.

Steps:

1. Local global single-scale saliency.(Principle 1-3)

 is the euclidean distance between the positions of the two patches,  is the euclidean distance between the two patches in CIE L*a*b color space. This dissimilarity measure is proportional to the color difference and inversely proportional to the positional distance.

Finding the most K similar patches of the current patch centering at the current processed pixel and summing up, the single-scale saliency value is defined as above.

2. Multiscale saliency enhancement

For every patch of scale r, we search its neighboring patches who's scale range in {r, r/2, r/4}. Hence, the saliency of each pixel can be rewritten as :

Saliency map will be normalized to [0, 1]. Instead of just considering a single scale(r) of each patch, we represent each of them in multiscale(M scales for example). Then the saliency is :

3. Including the immediate context(principle 3)

The main purpose of this step is to take more attention to the area that are close to the foci of attention while attenuate those far away from.

To get the foci of attention, we set a threshold(0.8 in the paper) at each scale and its corresponding saliency map . Let  be the euclidean positional distance between pixel i and the closest focus of attention pixel at scale r, normalized to [0,1]. The saliency of pixel i is redefined as :

Here is the corresponding picture:

4. Center prior(principle 4)

To enhance those near to the image center while depress others.

5. High-level factors(principle 4)

For example, one could incorporate the face detection algorithm, which generates 1 for face pixels and 0 otherwise. The saliency map can then be modified by taking the maximum value of the saliency map and the face map. This part is excluded in this paper.

.

PAMI 2010 Context-aware saliency detection的更多相关文章

  1. paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

    1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...

  2. {Links}{Matting}{Saliency Detection}{Superpixel}Source links

    自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...

  3. [精读]Spationtemporal Saliency Detection Using Textural Contrast and Its Applications

    Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 ...

  4. Saliency Detection via Graph-Based Manifold Ranking

    Saliency Detection via Graph-Based Manifold Ranking https://www.yuque.com/lart/papers 本文不是按照之前的论文那样, ...

  5. Saliency Detection: A Spectral Residual Approach

    Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach ...

  6. 论文阅读:Review of Visual Saliency Detection with Comprehensive Information

    这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...

  7. 视觉显著性检测(Visual saliency detection)相关概念

    视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...

  8. 显著性检测(saliency detection)评价指标之sAUC(shuffled AUC)的Matlab代码实现

    AUC_shuffled.m function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, st ...

  9. 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现

    calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...

随机推荐

  1. Oracle 用户管理与权限控制

    Oracle 用户管理与权限控制 oracle数据库的权限系统分为系统权限与对象权限.系统权限( database system privilege )可以让用户执行特定的命令集.例如,create ...

  2. HttpClientUtil [使用apache httpclient模拟http请求]

    基于httpclient-4.5.2 模拟http请求 以get/post方式发送json请求,并获取服务器返回的json -------------------------------------- ...

  3. jquery 通知页面变化

    var PageTitleNotification = { Vars: { OriginalTitle: document.title, Interval: null, IsNotificationE ...

  4. 【学】jQuery的源码思路6——增加each,animaion,ajax以及插件机制

    each() 插件机制 animation ajax //each() //这里第一个参数指定将this指向每次循环到的那个元素身上,而第三个参数element其实就是this本身所以和第一个参数是一 ...

  5. osgi笔记

    Bundle-Classpath可以实现内嵌jar. 一个Bundle的Activator不需要进行Export 一个Package中的类被两个ClassLoader加载,包中的Private cla ...

  6. C# 托管和非托管混合编程

    在非托管模块中实现你比较重要的算法,然后通过 CLR 的平台互操作,来使托管代码调用它,这样程序仍然能够正常工作,但对非托管的本地代码进行反编译,就很困难.   最直接的实现托管与非托管编程的方法就是 ...

  7. sqlserver2008 创建定时任务

    SQL2008如何创建定时作业?此方法也适应于Sql Server2005数据库,有兴趣的可以来看下! 1.打开[SQL Server Management Studio],在[对象资源管理器]列表中 ...

  8. JavaScript的学习1

    1.什么是JavaScript? JavaScirpt 它是由网景公司开发的一款基本浏览器.基于面向对象.事件驱动式的网页脚本语言!它的主要应用场景是表单验证.网页特效.一些简单的网页游戏.与服务器进 ...

  9. NGUI的localPosition和Position之间的关系

    假设有子节点为child, 父节点为parent, 且都是Transform类型. 则: child.localPosition = (child.position - parent.position ...

  10. [转]CIDR简介

    IP Subnetting and Variable Length Subnet Masks Subnetting Basics 子网划分(subnetting)的优点: 1.减少网络流量 2.提高网 ...