PAMI 2010 Context-aware saliency detection
This is a highly-cited paper. The context aware saliency proposed based on four principles, which can be explained as follows:
1. Areas that have distinctive colors or patterns should obtain high saliency;
2. Frequently occurring features should be suppressed;
3. The salient pixels should be grouped together and not spread over the image;
4. High-level factors such as priors on the salient object location and object detection are useful.
Steps:
1. Local global single-scale saliency.(Principle 1-3)

is the euclidean distance between the positions of the two patches,
is the euclidean distance between the two patches in CIE L*a*b color space. This dissimilarity measure is proportional to the color difference and inversely proportional to the positional distance.

Finding the most K similar patches of the current patch centering at the current processed pixel and summing up, the single-scale saliency value is defined as above.
2. Multiscale saliency enhancement
For every patch of scale r, we search its neighboring patches who's scale range in {r, r/2, r/4}. Hence, the saliency of each pixel can be rewritten as :

Saliency map
will be normalized to [0, 1]. Instead of just considering a single scale(r) of each patch, we represent each of them in multiscale(M scales for example). Then the saliency is :


3. Including the immediate context(principle 3)
The main purpose of this step is to take more attention to the area that are close to the foci of attention while attenuate those far away from.
To get the foci of attention, we set a threshold(0.8 in the paper) at each scale and its corresponding saliency map
. Let
be the euclidean positional distance between pixel i and the closest focus of attention pixel at scale r, normalized to [0,1]. The saliency of pixel i is redefined as :

Here is the corresponding picture:

4. Center prior(principle 4)
To enhance those near to the image center while depress others.


5. High-level factors(principle 4)
For example, one could incorporate the face detection algorithm, which generates 1 for face pixels and 0 otherwise. The saliency map can then be modified by taking the maximum value of the saliency map and the face map. This part is excluded in this paper.
.
PAMI 2010 Context-aware saliency detection的更多相关文章
- paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...
- {Links}{Matting}{Saliency Detection}{Superpixel}Source links
自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...
- [精读]Spationtemporal Saliency Detection Using Textural Contrast and Its Applications
Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 ...
- Saliency Detection via Graph-Based Manifold Ranking
Saliency Detection via Graph-Based Manifold Ranking https://www.yuque.com/lart/papers 本文不是按照之前的论文那样, ...
- Saliency Detection: A Spectral Residual Approach
Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach ...
- 论文阅读:Review of Visual Saliency Detection with Comprehensive Information
这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...
- 视觉显著性检测(Visual saliency detection)相关概念
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...
- 显著性检测(saliency detection)评价指标之sAUC(shuffled AUC)的Matlab代码实现
AUC_shuffled.m function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, st ...
- 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现
calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...
随机推荐
- EntityFrameWork使用
1.简单查询: SQL: ? 1 SELECT * FROM [Clients] WHERE Type=1 AND Deleted=0 ORDER BY ID EF: ? 1 2 3 4 5 6 7 ...
- Head First 设计模式之命令模式(CommandPattern)
前言: 本章会将封装带入到一个全新的境界,把方法调用封装起来.通过封装方法调用,把运算块包装成形.调用此运算的对象不需要知道事情是如何进行的,只要知道如何使用包装形成的方法来完成它就ok了. 1 现实 ...
- oracle基础教程(8)oracle修改字符集
oracle基础教程(8)oracle修改字符集 1.用dba连接数据库 -->sqlplus / as sysdba 2.查看字符集 -->SELECT parameter, value ...
- Javascript模式(第三章字面量与构造函数)------读书笔记
一 对象字面量 1.1对象字面量的语法 1,对象键值对哈希表,在其他的编程语言中称之为“关联数组”, 2 键值对里面的值,可以是原始类型也可以是其他类型的对象,称之为属性,函数称之为方法 3 自定义对 ...
- IOS开发之--UIScrollView pagingEnabled自定义翻页宽度
用到UIScrollview的翻页效果时,有时需要显示一部分左右的内容,但是UIScrollView的PagingEnabled只能翻过整页,下面几个简单的设置即可实现 技术点: 1. 创建一个继承U ...
- 【MySQL】分页优化
前段时间由于项目的原因,对一个由于分页而造成性能较差的SQL进行优化,现在将优化过程中学习到关于分页优化的知识跟大家简单分享下. 分页不外乎limit,offset,在这两个关键字中,limit其实不 ...
- Jenkins若干小问题
1. Jenkins上不能直接在shell中调用scp命令来执行上传下载操作,核心问题是scp需要输入密码. 为了可以直接将密码传递过去.我们安装 sshpass 来透传密码 a. 安装sshpas ...
- U-boot的目录结构及spl功能
转 http://tieba.baidu.com/p/2836672721 对uboot-2010.06及其以后的版本,将体系结构相关的内容合并,增加include文件夹,分离出通用库文件lib,其各 ...
- QQ右下角浮动窗口
<html><head><meta http-equiv="Content-Type" content="text/html; charse ...
- Google Developing for Android 一 - 相关上下文介绍
前几天在G+上看到Google Developers站点,有一个Android系列的文章,分享到个人微博,周末闲来没事就学写了下,把它们简单的翻译了下,没想到一发不可收拾,六篇文章全部都翻译完了,有些 ...