举例:分别用欧拉法和龙哥库塔法求解下面的微分方程

我们知道的欧拉法(Euler)"思想是用先前的差商近似代替倒数",直白一些的编程说法即:f(i+1)=f(i)+h*f(x,y)其中h是设定的迭代步长,若精度要求不高,一般可取0.01。在定义区间内迭代求解即可。
龙哥库塔法一般用于高精度的求解,即高阶精度的改进欧拉法,常用的是四阶龙哥库塔,编程语言如下:
y(i+1)=y(i)+h*(k1+2*K2+2*k3+k4)/6;
k1=f(xi,yi)
k2=f(xi+h/2,yi+h*k1/2);
k3=f(xi+h/2,yi+h*k2/2);
k4=f(xi+h,yi+h*k3);
设置终止条件迭代求解。

matlab实现程序如下:

%% 龙哥库塔or欧拉法求解微分方程

t=0:0.01:3; %自变量范围
f = [];
g = [];
f(1) = 0.1; %f初值
g(1) = 1; %g初值

h=0.001;
for i=1:length(t)
%% 欧拉法

% f(i+1) =f(i)+h*(exp(f(i)*sin(t(i)))+g(i));
% g(i+1) =g(i)+h*(exp(g(i)*cos(t(i)))+f(i));

%% 龙哥库塔
kf1 = exp(f(i)*sin(t(i)))+g(i);%g(i)相当于常值
kf2 = exp((f(i)+kf1*h/2)*sin(t(i)+h/2))+g(i);
kf3 = exp((f(i)+kf2*h/2)*sin(t(i)+h/2))+g(i);
kf4 = exp((f(i)+kf3*h)*sin(t(i)+h))+g(i);
f(i+1) = f(i) + h*(kf1+2*kf2+2*kf3+kf4)/6;

kg1 = exp(f(i)*cos(t(i)))+f(i);%f(i)相当于常值
kg2 = exp((f(i)+kg1*h/2)*cos(t(i)+h/2))+f(i);
kg3 = exp((f(i)+kg2*h/2)*cos(t(i)+h/2))+f(i);
kg4 = exp((f(i)+kg3*h)*cos(t(i)+h))+f(i);
g(i+1) = g(i) + h*(kg1+2*kg2+2*kg3+kg4)/6;
end
figure(1)
plot(t,f(1:length(t)),t,g(1:length(t)));
legend('f函数','g函数')

龙哥库塔法or欧拉法求解微分方程matlab实现的更多相关文章

  1. Matlab学习——求解微分方程(组)

    介绍: 1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数 dsolve 用来解决常微分方程(组)的求解问 ...

  2. 用Matlab求解微分方程

    用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,.. ...

  3. ode45求解微分方程(MATLAB)

    首先介绍一下ode45的格式: [t,y] = ode45(odefun,tspan,y0) [t,y] = ode45(odefun,tspan,y0,options) [t,y,te,ye,ie] ...

  4. 数学——Euler方法求解微分方程详解(python3)

    算法的数学描述图解 实例 用Euler算法求解初值问题 \[ \frac{dy}{dx}=y+\frac{2x}{y^2}\] 初始条件\(y(0)=1\),自变量的取值范围\(x \in [0, 2 ...

  5. 杨恒说李的算法好-我问你听谁说的-龙哥说的(java中常见的List就2个)(list放入的是原子元素)

    1.List中常用的 方法集合: 函数原型 ******************************************* ********************************** ...

  6. 求解热传导方程matlab

    这是非稳态一维热传导的方法,也叫古典显格式. 如果是做数学建模,就别用了,这种方法计算量比较大,算的很慢,而且收敛不好. 但是如果实在没办法也能凑合用. 该改的地方我都用???代替了. 给个详细解释h ...

  7. 欧拉法求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x, y, h;   ...

  8. 后退欧拉法求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x,y,yn,h,t ...

  9. 欧拉法求解常微分方程(c++)【转载】

    摘自<c++和面向对象数值计算>,代码简洁明快,采用类进行封装实现代码,增强代码的重用性,通过继承可实现代码的重用,采用函数指针,通用性增强,在函数改变时只需要单独改变函数部分的代码,无需 ...

随机推荐

  1. JavaScript中concat()方法

    concat(参数) 用于数组之间的连接, arrayObject.concat(arrayX,arrayX,......,arrayX) 如: var a = [1,2,3]; document.w ...

  2. mysql 重置root密码

    最近又项目用到mysql 由于电脑上mysql是很久以前安装的root密码忘记了, 百度一下重置密码 Windows: 1.以系统管理员登陆: 2.停止MySQL服务: 3.进入CMD,进入MySQL ...

  3. 【原创】MVC4+Jquery+EasyUI实现的工作流平台

    最近把工作流从传统的WebFrom上迁移到我的MVC4安全权限基础框架中,感觉非常不错MVC4在各方面给用户的体验确实跟以前传统的WEB是质的提升.由于后面要做基于工作流技术的ERP,所以需要先把工作 ...

  4. Oracle PL/SQL

    PL/SQL 简介 PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言,是对 SQL 的扩展,它支持多种数据类型,如大对象和集合类型,可使用 ...

  5. centos 6安装epel

    1.通过:https://mirrors.ustc.edu.cn/找到epel rpm包链接,这里的是 https://mirrors.ustc.edu.cn/epel/epel-release-la ...

  6. cacti结合nagios

    使用系统ubuntu12.0.45 监控软件,cacti 使用的是源码安装系统自带的版本过低需要添加插件 nagios采用的系统自带版本 安装nagios apt-get install nagios ...

  7. ORACLE行转列通用过程

    create or replace procedure row_to_col(tabname in varchar2,                                   group_ ...

  8. iOS中文网址路径转换URLEncode

    如果返回的URL中有中文可以用此方法转换 今天发现一个蛋疼的问题,服务端返回的urlString里面有时含有中文,使用 [NSURL URLWithString:urlString]生成URL对象时, ...

  9. ios项目中安装和使用CocoaPods

    CocoaPods是什么? http://code4app.com/article/cocoapods-install-usage http://blog.csdn.net/jjmm2009/arti ...

  10. IOS --- OC与Swift混编

    swift 语言出来后,可能新的项目直接使用swift来开发,但可能在过程中会遇到一些情况,某些已用OC写好的类或封装好的模块,不想再在swift 中再写一次,哪就使用混编.这个在IOS8中是允许的. ...