要统计的文件的文件名为hello

hello中的内容如下

hello  you

hello  me

通过MapReduce程序统计出文件中的各个单词出现了几次.(两个单词之间通过tab键进行的分割)

 import java.io.IOException;

 import mapreduce.WordCountApp.WordCountMapper.WordCountReducer;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 以文本
* hello you
* hello me
* 为例子.
* map方法调用了两次,因为有两行
* k2 v2 键值对的数量有几个?
* 有4个.有四个单词.
*
* 会产生几个分组?
* 产生3个分组.
* 有3个不同的单词.
*
*/
public class WordCountApp {
public static void main(String[] args) throws Exception {
//程序在这里运行,要有驱动.
Configuration conf = new Configuration();
Job job = Job.getInstance(conf,WordCountApp.class.getSimpleName()); //我们运行此程序通过运行jar包来执行.一定要有这句话.
job.setJarByClass(WordCountApp.class); FileInputFormat.setInputPaths(job,args[0]); job.setMapperClass(WordCountMapper.class);//设置Map类
job.setMapOutputKeyClass(Text.class);//设置Map的key
job.setMapOutputValueClass(LongWritable.class);//设置Map的value
job.setReducerClass(WordCountReducer.class);//设置Reduce的类
job.setOutputKeyClass(Text.class);//设置Reduce的key Reduce这个地方只有输出的参数可以设置. 方法名字也没有Reduce关键字区别于Map
job.setOutputValueClass(LongWritable.class);//设置Reduce的value. FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);//表示结束了才退出,不结束不退出
}
/**
* 4个泛型的意识
* 第一个是LongWritable,固定就是这个类型,表示每一行单词的起始位置(单位是字节)
* 第二个是Text,表示每一行的文本内容.
* 第三个是Text,表示单词
* 第四个是LongWritable,表示单词的出现次数
*/
public static class WordCountMapper extends Mapper<LongWritable, Text, Text ,LongWritable>{
Text k2 = new Text();
LongWritable v2 = new LongWritable();
//增加一个计数器,这个Map调用几次就输出对应的次数.
int counter = 0; /**
* key和value表示输入的信息
* 每一行文本调用一次map函数
*/
@Override
protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
counter = counter + 1;
System.out.println("mapper 调用的次数:" + counter);
//这个map方法中的Mapper的各个泛型和上面的意识是一样的,分别代表的是k1,v1,k2,v2
String line = value.toString();
System.out.println(String.format("<k1,v1>的值<"+key.get()+","+line+">"));
String[] splited = line.split("\t");
for (String word : splited) {
k2.set(word);
v2.set(1);
System.out.println(String.format("<k2,v2>的值<"+k2.toString()+","+v2.get()+">"));
context.write(k2, v2);//通过context对象写出去.
}
}
/**
* 这个地方的四个泛型的意思
* 前两个泛型是对应的Map方法的后两个泛型.
* Map的输出对应的是Reduce的输入.
* 第一个Text是单词
* 第二个LongWritable是单词对应的次数
* 我们想输出的也是单词 和 次数
* 所以第三个和第四个的类型和第一和第二个的一样
*
* 分组指的是把相同key2的value2放到一个集合中
*
*/
public static class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
LongWritable v3 = new LongWritable();
//增加一个计数器,这个Reduce调用几次就输出对应的次数.
int counter = 0; /**
* 每一个分组调用一次reduce函数
* 过来的k2 分别是hello you me
*
*/
@Override
protected void reduce(Text key2, Iterable<LongWritable> value2Iterable,Reducer<Text, LongWritable, Text,
LongWritable>.Context context)
throws IOException, InterruptedException {
counter = counter + 1;
System.out.println("reducer 调用的次数:" + counter);
//第一个参数是单词,第二个是可迭代的集合. 为什么上面的LongWritable类型的对象value2变成了一个可以迭代的结合参数?
//因为分组指的是把相同key2的value2放到一个集合中
long sum = 0L;
for (LongWritable value2 : value2Iterable) {
System.out.println(String.format("<k2,v2>的值<"+key2.toString()+","+value2.toString()+">"));
sum += value2.get(); //这个value2是LongWritable类型的,不能进行+= 操作,要用get()得到其对应的java基本类型.
//sum表示单词k2 在整个文本中的出现次数.
}
v3.set(sum);
context.write(key2, v3);
System.out.println(String.format("<k3,v3>的值<"+key2.toString()+","+v3.get()+">"));
}
}
}
}

通过运行Yarn集群查看Map日志得到的输出结果:

查看Reduce日志产看到的输出结果:

//============================================================================

以下程序是之前的写的:注释更加详细:

 /*
* 一个hello文件内容如下:
* hello you
* hello me
*/
import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountApp {
public static void main(String[] args) throws Exception {
// 在main方法写驱动程序,把Map函数和Reduce函数组织在一起.
// 搞一个对象把Map对象和Reduce对象都放在这个对象中,我们把这个对象称作Job
// 两个形参,一个是Configuration对象,一个是Job的名称,这样获得了一个Job对象;
Job job = Job.getInstance(new Configuration(),
WordCountApp.class.getSimpleName());
// 对这个job进行设置
job.setJarByClass(WordCountApp.class);// 通过这个设置可以让框架识别你写的代码 job.setMapperClass(MyMapper.class);// 把自定义的Map类放到job中
job.setMapOutputKeyClass(Text.class);// 定义Map的key的输出类型,Map的输出是<hello,2>
job.setMapOutputValueClass(LongWritable.class);// 定义Map的value的输出类型 job.setReducerClass(MyReducer.class);// 把自定义的Reducer类放到job中
job.setOutputKeyClass(Text.class);// 因为Reduce的输出是最终的数据,Reduce的输出是<hello,2>
// 所以这个方法名中没有像Map对应的放发一样带有Reduce,直接就是setOutputKeyClass
job.setOutputValueClass(LongWritable.class);// 定义reduce的value输出 FileInputFormat.setInputPaths(job, args[0]);// 输入指定:传入一个job地址.
// 这个args[0] 就是新地址,"hdfs://192.168.0.170/hello"
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 输出指定
// 指定输入和输出路径可以通过在这里写死的方式,也可以通过main函数参数的形式
// 分别是args[0]和args[1] // 把job上传到yarn平台上.
job.waitForCompletion(true);
} /*
* 对于<k1,v1>而言,每一行产生一个<k1,v1>对,<k1,v1>表示<行的起始位置,行的文本内容>
* 就本例而言map函数总共调用两次,因为总共只有两行.
* 正对要统计的文本内容可以知道总共两行,总共会调用两次Map函数对应产生的<k1,v1>分别是<0,hello you>
* 和第二个<k1,v1>是<10,hello me>
*/
private static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
// 这个Mapper的泛型参数是<KEYIN,VALUEIN,KEYOUT,VALUEOUT> 分别对应的是k1,v1,k2,v2
// 我们如下讲的k1,v1的类型是固定的.
// 就本例而言,map函数会被调用2次,因为总共文本文件就只有两行. //要定义输出的k2和v2.本案例中可以分析出<k2,v2>是对文本内容的统计<hello,1><hello,1><you,1><me,1>
//而且<k2,v2>的内容是和<k3,v3>中的内容是一样的.
Text k2 = new Text();
LongWritable v2 = new LongWritable();
//重写父类Mapper中的map方法
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//通过代码或者案例分析就可以知道k1其实没有什么用出的.
String line = value.toString();
String[] splited = line.split("\t");//根据制表分隔符机进行拆分.hello和me,you之间是一个制表分隔符.
for (String word : splited) {
k2.set(word);
v2.set(1);
context.write(k2, v2);
//用context把k2,v2写出去,框架会写,不用我们去管.
}
}
} private static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
//这个例子中的<k2,v2>和<k3,v3>中的k是一样的,所以这里,k2当做k3了.
LongWritable v3 = new LongWritable();
@Override
protected void reduce(Text k2, Iterable<LongWritable> v2s,
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//Reduce是对上面Map中的结果进行汇总的.
//上面拆分出来的<k2,v2>是<hello,1><hello,1><you,1><me,1>Reduce方法中就要对其进行汇总.
long sum = 0L;
for(LongWritable v2:v2s){
sum = sum +v2.get();//sum是long类型,v2是LongWritable类型
//LongWritable类型转换成long类型用get()方法.
//sum的值表示单词在整个文件中出现的中次数.
}
v3.set(sum);
context.write(k2,v3);
}
} }

//===============================================================================

查看日志的时候,代码中的System.out.println()对于Java程序输出到控制台,但是这个地方是把Java类打成Jar包,

放到集群中去通过命令执行的.

输出通过日志查看的.

上面对应的Log Type:stdout

stdout:stdout(Standardoutput)标准输出

另外一个关于单词计数的总结:http://www.cnblogs.com/DreamDrive/p/5494866.html

关于MapReduce单词统计的例子:的更多相关文章

  1. MapReduce 单词统计案例编程

    MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1.   解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.ta ...

  2. 2、 Spark Streaming方式从socket中获取数据进行简单单词统计

    Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark ...

  3. 大数据学习——mapreduce程序单词统计

    项目结构 pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&q ...

  4. Hadoop分布环境搭建步骤,及自带MapReduce单词计数程序实现

    Hadoop分布环境搭建步骤: 1.软硬件环境 CentOS 7.2 64 位 JDK- 1.8 Hadoo p- 2.7.4 2.安装SSH sudo yum install openssh-cli ...

  5. Spark入门(三)--Spark经典的单词统计

    spark经典之单词统计 准备数据 既然要统计单词我们就需要一个包含一定数量的文本,我们这里选择了英文原著<GoneWithTheWind>(<飘>)的文本来做一个数据统计,看 ...

  6. 【Cloud Computing】Hadoop环境安装、基本命令及MapReduce字数统计程序

    [Cloud Computing]Hadoop环境安装.基本命令及MapReduce字数统计程序 1.虚拟机准备 1.1 模板机器配置 1.1.1 主机配置 IP地址:在学校校园网Wifi下连接下 V ...

  7. Java实现单词统计

    原文链接: https://www.toutiao.com/i6764296608705151496/ 单词统计的是统计一个文件中单词出现的次数,比如下面的数据源 其中,最终出现的次数结果应该是下面的 ...

  8. ytu 2002:C语言实验——单词统计(水题)

    C语言实验——单词统计 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 61  Solved: 34[Submit][Status][Web Board] ...

  9. 自定义实现InputFormat、OutputFormat、输出到多个文件目录中去、hadoop1.x api写单词计数的例子、运行时接收命令行参数,代码例子

    一:自定义实现InputFormat *数据源来自于内存 *1.InputFormat是用于处理各种数据源的,下面是实现InputFormat,数据源是来自于内存. *1.1 在程序的job.setI ...

随机推荐

  1. Laravel Configuration

    Introduction All of the configuration files for the Laravel framework are stored in the app/config d ...

  2. Mac下的截屏功能

    全屏截图 对全屏的截图我们可以通过按 苹果键(花键)+Shift键+3来执行,之后伴随着清脆的一声提示音后,在桌面上就会生成一个图片文件,这就是刚刚截屏的图片了,默认文件类型是PNG的. 自定义截图 ...

  3. 使用PUT方法上传文件无法工作原因分析

    现象 在Spring Framework中,使用HTTP的PUT方法上传文件时,在服务器端发现Multipart参数为空. 原因 Spring中的StandardServletMultipartRes ...

  4. MES系统的有用存储过程

    USE [ChiefmesNEW]GO/****** Object: StoredProcedure [dbo].[st_WMS_ImportStockInBill] Script Date: 10/ ...

  5. shiro安全三部曲

    源:http://blog.csdn.net/boonya/article/details/8233435 第一部分 Shiro简介及项目目录结构 最新官方示例下载:http://shiro.apac ...

  6. ADO.NET 快速入门(三):从存储过程获取输出参数

    一些存储过程通过参数返回值.当参数在SQL表达式或者存储过程中被定义为“输出”,参数值会返回给调用者.返回值存储在 OleDbCommand 或者 SqlCommand 对象的参数集合的参数里.   ...

  7. 使用EA逆向生成数据库E-R图

    1. 创建ODBC数据源 2. 逆向工程

  8. C#获得和发送网站Session

    request = (HttpWebRequest)WebRequest.Create(url);                                         if (Const. ...

  9. hdu1428漫步校园( 最短路+BFS(优先队列)+记忆化搜索(DFS))

    Problem Description LL最近沉迷于AC不能自拔,每天寝室.机房两点一线.由于长时间坐在电脑边,缺乏运动.他决定充分利用每次从寝室到机房的时间,在校园里散散步.整个HDU校园呈方形布 ...

  10. head first c&lt;11&gt;初探网络编程上

    server连接网络四部曲. 为了与外界沟通,c程序用数据流读写字节.比較经常使用的数据流有标准输入.标准输出.文件等. 假设想写一个与网络通信的程序.就须要一种新的数据流----------套接字. ...