题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533

Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 601    Accepted Submission(s):
320

Problem Description
The sky was brushed clean by the wind and the stars
were cold in a black sky. What a wonderful night. You observed that, sometimes
the stars can form a regular polygon in the sky if we connect them properly. You
want to record these moments by your smart camera. Of course, you cannot stay
awake all night for capturing. So you decide to write a program running on the
smart camera to check whether the stars can form a regular polygon and capture
these moments automatically.

Formally, a regular polygon is a convex
polygon whose angles are all equal and all its sides have the same length. The
area of a regular polygon must be nonzero. We say the stars can form a regular
polygon if they are exactly the vertices of some regular polygon. To simplify
the problem, we project the sky to a two-dimensional plane here, and you just
need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T

indicating the total number of test cases. Each test case begins with an
integer n

, denoting the number of stars in the sky. Following n

lines, each contains 2

integers xi,yi

, describe the coordinates of n

stars.

1≤T≤300

3≤n≤100

−10000≤xi,yi≤10000

All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars
can form a regular polygon. Otherwise, output "`NO`" (both without
quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
题意:给你n个坐标让你判断是不是正n边形;
题解:从第一个点a开始,找这个点到其余所有点中距离最短的点b,然后将点a标记,再以b为起点找其余没有标记过的点中距离他最近的c,再将b点标记,以此类推,(注意将所有的最短边存下来)最后如果所有的最短边都相等则是正多边形
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stdlib.h>
#include<math.h>
#define MAX 10010
#define INF 0x3f3f3f
#define DD double
using namespace std;
DD f(DD x1,DD y1,DD x2,DD y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
int t,n,m,j,i,k;
DD x[MAX],y[MAX];
DD s[MAX];
int vis[MAX];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%lf%lf",&x[i],&y[i]);
int k=0;
memset(vis,0,sizeof(vis));
DD Min;
int next=1;
int ans=1;
for(i=1;i<=n;i++)
{
Min=INF;
for(j=1;j<=n;j++)
{
if(next==j) continue;
//如果自己到自己就跳过
else if(!vis[j])
{
if(Min>f(x[next],y[next],x[j],y[j]))
{
Min=f(x[next],y[next],x[j],y[j]);
//找距离next点最近的点
ans=j;
}
}
}
next=ans; //找到下一个点
vis[next]=1;
s[k++]=Min;
}
int flag=1;
for(i=0;i<k-1;i++)
{
if(s[i]!=s[i+1])
{
flag=0;
break;
}
}
if(s[0]!=s[k-1])
flag=0;
if(flag)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

hdu 5533 Dancing Stars on Me的更多相关文章

  1. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  2. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  3. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  4. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. Dancing Stars on Me(判断正多边形)

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  7. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  8. hdu 5533

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  9. hdu 5533 正n边形判断 精度处理

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

随机推荐

  1. WebViewJavascriptBridge 原理分析

    WebViewJavascriptBridge 原理分析 网上好多都是在介绍 WebViewJavascriptBridge如何使用,这篇文章就来说说 WebViewJavascriptBridge ...

  2. 李洪强iOS开发之代理

    如果A想让控制器B为他做事情 用代理的话 首先: 在A的.h文件中:  其次A的.m中 在控制器的.m文件中: 还是在控制器B的.m文件中 在A初始化的那一刻设置控制器B为A的代理 在B的.m中实现代 ...

  3. P163、面试题29:数组中出现次数超过一半的数字

    题目:数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. 思 ...

  4. 一个php类 Autoloader

    php autoloader: This is a class for PHP that keeps the user from having to manually include classes ...

  5. echarts入门,5分钟上手写ECharts的第一个图表

    1.新建一个echarts.html文件,为ECharts准备一个具备大小(宽高)的Dom. <!DOCTYPE html> <head> <meta charset=& ...

  6. POI使用cell.getCellStyle()设置指定单元格颜色,但是其它没有指定的单元格也会变色

    HSSFCell cell = row.createCell((short)i); cell.getCellStyle().setAlignment(HSSFCellStyle.ALIGN_RIGHT ...

  7. bzoj3205

    和bzoj2595类似,也是斯坦纳树 设f[l,r,]表示在点i机器人组合成了l-r最少推的次数,然后可得 f[l,r,i]=min(f[l,m,i]+f[m+1,r,i]) f[l,r,i]=min ...

  8. POJ (线段相交 最短路) The Doors

    题意: 一个正方形中有n道竖直的墙,每道墙上开两个门.求从左边中点走到右边中点的最短距离. 分析: 以起点终点和每个门的两个端点建图,如果两个点可以直接相连(即不会被墙挡住),则权值为两点间的欧几里得 ...

  9. 对redis客户端jedis2.8.0的进一步封装

    jedis2.8.0的进一步封装: 1.序列化存储对象 2.结合spring,创建redis连接池 3.提供了基础的单个实体操作,有序list操作和一对多关系list的操作,对list提供了分页的封装 ...

  10. 在PowerDesigner中设计物理模型2——约束

    唯一约束 唯一约束与创建唯一索引基本上是一回事,因为在创建唯一约束的时候,系统会创建对应的一个唯一索引,通过唯一索引来实现约束.不过唯一约束更直观的表达了对应列的唯一性,使得对应索引的目的更加清晰,所 ...