题目的意思很简单,给你一个已经连通的无向图,我们知道,图上不同的边连通分量之间有一定数量的桥,题目要求的就是要你再在这个图上加一条边,使得图的桥数目减到最少。

首先要做的就是找出桥,以及每个点所各自代表的连通分量。 找桥的方法就是经典的low[u],pre[v]的判断,这个在大白书上也有比较详尽的介绍。当我们找到桥之后我们当然要把桥边存起来,存的时候就有很多姿势了,因为题目给的点达到200000的级别,所以肯定不能开一个邻接矩阵,所以存的时候要么就开个vector<Edge>存下所有的桥边,但是遍历索引的时候就会很蛋疼。要么就采用另外一种方法,vector<int> P[i],其中P[i]这个vector里存下了所有的与i相连构成桥边的点,也就是P[i][j]和i之间存在桥。

找完桥之后就是找边双连通分量。按照大白书上的说法,第一遍dfs找桥,第二遍dfs只需要跳过所有的桥边dfs就可以找到属于同一个边双连通分量的点了。所以当你要判断由u能不能dfs到v的时候,只需要判断(u,v) 是不是桥,也就是v在不在P[i]里,在的话则跳过。

当我们做完上述操作的时候,我们就可以求出了各自点代表的连通分量了。这个时候我们就重新缩点构图,处于同一个边双连通分量内的点缩成一个点,那么最后什么边会是新图上的边呢? 根据性质我们可以知道,只有桥才是新图上的边,这个时候我们存储的P[i]就派上大用途了,因为P[i][j]和i各自处于的双连通分量中存在边,所以根据P数组和bccno就可以建出新的图。

建出新的图之后就是关于如何实现减少桥边的问题了。不难发现,当前的图是一棵树(这是自然的吧),所以树上的每一条边都是桥,当我们加了一条边之后,就会形成环,这个环所在的所有点这时候又缩成一个点,换言之,环上的桥边减少了。显然我们要选的就是新图上最长的链。

树的最长链就是树的直径。找直径的方法可以考虑采取树dp(我之前的挫办法),也可以用两次BFS,随便选一个点BFS,BFS到的最后一个点一定是直径的一端,然后再从这个点BFS,BFS到的最后一个点必然也是直径的一端。但是BFS写起来没有DFS版本的快,DFS就是随便选一点dfs,dfs到的深度最大的点是直径的一端,从那一个点再dfs一次,深度最大的那个点就是直径的另一端,这时这个点的深度dep-1就是最长链的长度。

最后输出的答案就是桥的数量-最长链的长度,桥的数量就是树的点-1 也就是 bcc_cnt-1, 最长链的长度是dep-1,所以最后的答案就是bcc_cnt-dep

下面的代码严重的参(chao)考(xi)了这个网址,感谢大神们的博客让我得到长足的进步:

http://www.cnblogs.com/arbitrary/archive/2013/08/04/3236092.html

#pragma warning(disable:4996)
#pragma comment(linker,"/STACK:102400000,102400000")
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<iostream>
#define maxn 200050
using namespace std; struct Edge
{
int u, v;
Edge(){}
Edge(int ui, int vi) :u(ui), v(vi){}
}; vector<int> G[maxn+50];
vector<Edge> edges;
vector<int> P[maxn + 50]; // 桥点邻接表
int n,m; int low[maxn + 50];
int pre[maxn + 50];
int dfs_clock; int dfs(int u, int fa)
{
int lowu = pre[u] = ++dfs_clock;
for (int i = 0; i < G[u].size(); i++){
int mm = G[u][i];
if (fa == (mm ^ 1)) continue;
int v = edges[mm].v;
if (!pre[v]){
int lowv = dfs(v, mm);
lowu = min(lowu, lowv);
if (lowv>pre[u]){
P[u].push_back(v);
P[v].push_back(u);
}
}
else if (pre[v] < pre[u]){
lowu = min(lowu, pre[v]);
}
}
return low[u] = lowu;
} int bccno[maxn + 50];
int bcc_cnt;
void dfs_bcc(int u)
{
bccno[u] = bcc_cnt;
for (int i = 0; i < G[u].size(); i++){
int mm = G[u][i];
int v = edges[mm].v;
if (bccno[v]) continue;
bool flag = true;
for (int j = 0; j < P[u].size(); j++){
if (v == P[u][j]) {
flag = false;
break;
}
}
if (!flag) continue;
dfs_bcc(v);
}
} void find_bcc()
{
memset(low, 0, sizeof(low));
memset(pre, 0, sizeof(pre));
dfs_clock = 0;
memset(bccno, 0, sizeof(bccno));
bcc_cnt = 0;
for (int i = 1; i <= n; i++){
if (!pre[i]) dfs(i, -1);
}
for (int i = 1; i <= n; i++){
if (!bccno[i]){
bcc_cnt++;
dfs_bcc(i);
}
}
} vector<int> NG[maxn + 50];
int dep[maxn + 50];
void ndfs(int u, int depth)
{
dep[u] = depth;
for (int i = 0; i < NG[u].size(); i++){
int v = NG[u][i];
if (!dep[v]) ndfs(v, depth + 1);
}
} void constructNG()
{
for (int i = 0; i <= bcc_cnt; i++){
NG[i].clear();
}
for (int i = 1; i <= n; i++){
for (int j = 0; j < P[i].size(); j++){
int v = P[i][j];
NG[bccno[i]].push_back(bccno[v]);
}
}
} int main()
{
while (cin >> n >> m&&(n||m))
{
for (int i = 0; i <= n; i++) G[i].clear(), P[i].clear();
edges.clear();
int u, v;
for (int i = 0; i < m; i++){
scanf("%d%d", &u, &v);
edges.push_back(Edge(u, v));
G[u].push_back(edges.size() - 1);
edges.push_back(Edge(v, u));
G[v].push_back(edges.size() - 1);
}
find_bcc();
constructNG();
memset(dep, 0, sizeof(dep));
ndfs(1, 1);
int mxdep = 0; int mdp=0;
for (int i = 1; i <= bcc_cnt; i++){
if (dep[i] > mxdep){
mdp = i; mxdep = dep[i];
}
}
memset(dep, 0, sizeof(dep));
ndfs(mdp, 1);
mxdep = 0;
for (int i = 1; i <= bcc_cnt; i++){
if (dep[i] > mxdep) mxdep = dep[i];
}
printf("%d\n", bcc_cnt-mxdep);
}
return 0;
}

HDU4612 Warm up 边双连通分量&&桥&&树直径的更多相关文章

  1. HDU-4612 Warm up 边双连通分量+缩点+最长链

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 简单图论题,先求图的边双连通分量,注意,此题有重边(admin还逗比的说没有重边),在用targ ...

  2. hdu4612 Warm up[边双连通分量缩点+树的直径]

    给你一个连通图,你可以任意加一条边,最小化桥的数目. 添加一条边,发现在边双内是不会减少桥的.只有在边双与边双之间加边才有效.于是,跑一遍边双并缩点,然后就变成一棵树,这样要加一条非树边,路径上的点( ...

  3. Graph_Master(连通分量_A_双连通分量+桥)

    hdu 5409 题目大意:给出一张简单图,求对应输入的m条边,第i-th条边被删除后,哪两个点不连通(u,v,u<v),若有多解,使得u尽量大的同时v尽量小. 解题过程:拿到题面的第一反应缩点 ...

  4. hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

  5. HDU 4612——Warm up——————【边双连通分量、树的直径】

    Warm up Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. [HDOJ4612]Warm up(双连通分量,缩点,树直径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 所有图论题都要往树上考虑 题意:给一张图,仅允许添加一条边,问能干掉的最多条桥有多少. 必须解决 ...

  7. HDU 4612 Warm up (边双连通分量+缩点+树的直径)

    <题目链接> 题目大意:给出一个连通图,问你在这个连通图上加一条边,使该连通图的桥的数量最小,输出最少的桥的数量. 解题分析: 首先,通过Tarjan缩点,将该图缩成一颗树,树上的每个节点 ...

  8. HDU 4612 Warm up (边双连通分量+DP最长链)

    [题意]给定一个无向图,问在允许加一条边的情况下,最少的桥的个数 [思路]对图做一遍Tarjan找出桥,把双连通分量缩成一个点,这样原图就成了一棵树,树的每条边都是桥.然后在树中求最长链,这样在两端点 ...

  9. HDU 3394 双连通分量 桥 Railway

    第一个答案是统计图中桥的个数 如果一个点-双连通分量中边的个数大于点的个数那么这个块中所有的边都是冲突的,累加到第二个答案中去. #include <iostream> #include ...

随机推荐

  1. java synchronized关键字浅探

    synchronized 是 java 多线程编程中用于使线程之间的操作串行化的关键字.这种措施类似于数据库中使用排他锁实现并发控制,但是有所不同的是,数据库中是对数据对象加锁,而 java 则是对将 ...

  2. 《Linux shell编程中 diff与vimdif的使用》RHEL6

    linux比较2个文件的区别有两个命令: (1)diff (2)vimdiff cp /etc/grub.conf hello 在hello文件的末尾添加zhangsan 使用diff比较2个文件的区 ...

  3. 添加远程链接MySQL的权限

    mysql> grant 权限1,权限2,…权限n on 数据库名称.表名称 to 用户名@用户地址 identified by ‘连接口令’; 权限1,权限2,…权限n代表select,ins ...

  4. $(document).height()、$("body").height()、$(window).height()区别和联系

    前言:在此以高度为示例,宽度问题可类推.在移动端开发中,经常遇到需要把一块内容定位于底部的情况,当页面内容不满一屏时,需要设为fixed,而超过 一屏时,需要设为static随页面顶到底部,此时就需要 ...

  5. webview的弹性布局之rem,em

    webview页面的自适应一般有两种方法,即一是JS的计算方法,二是通过css的media设置分档方式.在此主要介绍css的方式. html { font-size: 16px; } @media o ...

  6. 解决Win7下运行php Composer出现SSL报错的问题

    以前都在linux环境使用php composer.今天尝试在win7下运行composer却出现SSL报错: D:\data\www\mmoyu\symapp>php -f %phprc%\c ...

  7. String与StringBuffer对象问题

    下面的代码创建了三个String对象,其中pool中一个,heap中两个 String s1 = new String("abc"); String s2 = new String ...

  8. php 伪静态 (url rewrite mod_rewrite 重写)

    mod_rewrite是Apache的一个非常强大的功能,它可以实现伪静态页面.下面我详细说说它的使用方法!对初学者很有用的哦!1.检测Apache是否支持mod_rewrite通过php提供的php ...

  9. Windows7鼠标右键里没有新建文本文件的选项,解决办法

    1.“开始”->“运行”,输入"regedit",打开注册表编辑器 2.展开HKEY_CLASSES_ROOT,找到.txt 3.选中.txt,查看右侧窗格的“默认值”是不是 ...

  10. 【Web学习日记】——在IIS上发布一个WebService

    没有开发过程,只是发布过程 一.前提 开发使用的是VS2013 从来没有做过Web的发布,在网上找例子,看到的总是与自己的情况不相符,而且也有人提出了VS2013发布网站的问题,但解决方案却很少,好不 ...