MapReduce编程系列 — 6:多表关联
1、项目名称:

package com.mtjoin; import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin {
public static int time = 0;
public static class Map extends Mapper<Object, Text, Text, Text>{
public void map(Object key, Text value, Context context)throws IOException,InterruptedException{
System.out.println("mapper........................");
String line = value.toString();
if(line.contains("factoryname")==true || line.contains("addressID")== true){
return ;
}
int i = 0;
while(line.charAt(i) >= '9'|| line.charAt(i) <= '0'){
i++;
} if(line.charAt(0) >= '9'|| line.charAt(0) <= '0'){
int j = i-1;
while(line.charAt(j) != ' ') j--;
System.out.println("key:"+line.substring(i)+" value:"+line.substring(0,j)); String values[] = {line.substring(0, j),line.substring(i)}; context.write(new Text(values[1]), new Text("1+"+values[0]));
}
else {
int j = i + 1;
while(line.charAt(j)!=' ') j++;
System.out.println("key:"+line.substring(0, i+1)+" value:"+line.substring(j));
String values[] ={line.substring(0,i+1),line.substring(j)};
context.write(new Text(values[0]), new Text("2+"+values[1]));
}
}
} public static class Reduce extends Reducer<Text, Text, Text, Text>{
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException,InterruptedException{
System.out.println("reducer........................");
if( time == 0){
context.write(new Text("factoryname"), new Text("addressname"));
time++;
}
int factorynum = 0;
String factory[] = new String[10];
int addressnum = 0;
String address[] = new String[10]; Iterator ite = values.iterator();
while(ite.hasNext()){
String record = ite.next().toString();
char type = record.charAt(0);
if(type == '1'){
factory[factorynum] = record.substring(2);
factorynum++;
}
else{
address[addressnum] = record.substring(2);
addressnum++;
}
}
if(factorynum != 0 && addressnum != 0){
for(int m = 0 ; m < factorynum ; m++){
for(int n = 0; n < addressnum; n++){
context.write(new Text(factory[m]), new Text(address[n]));
System.out.println("factoryname:"+factory[m]+" addressname:"+address[n]);
}
}
}
}
}
public static void main(String [] args)throws Exception{
Configuration conf = new Configuration();
String otherArgs[] = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2){
System.err.println("Usage:MTjoin<in><out>");
System.exit(2);
}
Job job = new Job(conf,"multiple table join");
job.setJarByClass(MTjoin.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)? 0:1);
}
}
版本二(简化版):
package com.mtjoin; import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin {
public static int time = 0;
public static class Map extends Mapper<Object, Text, Text, Text>{
public void map(Object key, Text value, Context context)throws IOException,InterruptedException{
System.out.println("mapper........................");
String line = value.toString();
if(line.contains("factoryname")==true || line.contains("addressID")== true){
return ;
}
int len = line.length(); if(line.charAt(0) > '9'|| line.charAt(0) < '0'){
System.out.println("key:"+line.substring(len-1)+" value:"+line.substring(0,len-2)); String values[] = {line.substring(0, len-2),line.substring(len-1)}; context.write(new Text(values[1]), new Text("1+"+values[0]));
}
else {
System.out.println("key:"+line.substring(0, 1)+" value:"+line.substring(2));
String values[] ={line.substring(0,1),line.substring(2)};
context.write(new Text(values[0]), new Text("2+"+values[1]));
}
}
} public static class Reduce extends Reducer<Text, Text, Text, Text>{
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException,InterruptedException{
System.out.println("reducer........................");
if( time == 0){
context.write(new Text("factoryname"), new Text("addressname"));
time++;
}
int factorynum = 0;
String factory[] = new String[10];
int addressnum = 0;
String address[] = new String[10]; Iterator ite = values.iterator();
while(ite.hasNext()){
String record = ite.next().toString();
char type = record.charAt(0);
if(type == '1'){
factory[factorynum] = record.substring(2);
factorynum++;
}
else{
address[addressnum] = record.substring(2);
addressnum++;
}
}
if(factorynum != 0 && addressnum != 0){
for(int m = 0 ; m < factorynum ; m++){
for(int n = 0; n < addressnum; n++){
context.write(new Text(factory[m]), new Text(address[n]));
System.out.println("factoryname:"+factory[m]+" addressname:"+address[n]);
}
}
}
}
} public static void main(String [] args)throws Exception{
Configuration conf = new Configuration();
String otherArgs[] = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2){
System.err.println("Usage:MTjoin<in><out>");
System.exit(2);
}
Job job = new Job(conf,"multiple table join");
job.setJarByClass(MTjoin.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)? 0:1);
}
}
1 Beijing
2 Guangzhou
3 Shenzhen
4 Xian
Beijing Red Star 1
Shenzhen Thunder 3
Guangzhou Honda 2
Beijing Rising 1
Guangzhou Development Bank 2
Tencent 3
Bank of Beijing 1
14/09/24 09:39:55 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/09/24 09:39:55 INFO input.FileInputFormat: Total input paths to process : 2
14/09/24 09:39:55 WARN snappy.LoadSnappy: Snappy native library not loaded
14/09/24 09:39:55 INFO mapred.JobClient: Running job: job_local_0001
14/09/24 09:39:55 INFO util.ProcessTree: setsid exited with exit code 0
14/09/24 09:39:55 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@e095722
14/09/24 09:39:55 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:55 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:55 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing Red Star
mapper........................
key:3 value:Shenzhen Thunder
mapper........................
key:2 value:Guangzhou Honda
mapper........................
key:1 value:Beijing Rising
mapper........................
key:2 value:Guangzhou Development Bank
mapper........................
key:3 value:Tencent
mapper........................
key:1 value:Bank of Beijing
14/09/24 09:39:55 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:55 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:55 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/09/24 09:39:56 INFO mapred.JobClient: map 0% reduce 0%
14/09/24 09:39:58 INFO mapred.LocalJobRunner:
14/09/24 09:39:58 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
14/09/24 09:39:58 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@7dabd20
14/09/24 09:39:58 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:58 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:58 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing
mapper........................
key:2 value:Guangzhou
mapper........................
key:3 value:Shenzhen
mapper........................
key:4 value:Xian
14/09/24 09:39:58 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:58 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:58 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
14/09/24 09:39:59 INFO mapred.JobClient: map 100% reduce 0%
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
14/09/24 09:40:01 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@49fa6f3c
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Merger: Merging 2 sorted segments
14/09/24 09:40:01 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 218 bytes
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
reducer........................
factoryname:Beijing Red Star addressname:Beijing
factoryname:Beijing Rising addressname:Beijing
factoryname:Bank of Beijing addressname:Beijing
reducer........................
factoryname:Guangzhou Honda addressname:Guangzhou
factoryname:Guangzhou Development Bank addressname:Guangzhou
reducer........................
factoryname:Shenzhen Thunder addressname:Shenzhen
factoryname:Tencent addressname:Shenzhen
reducer........................
14/09/24 09:40:01 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/09/24 09:40:01 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/mtjoin_output02
14/09/24 09:40:04 INFO mapred.LocalJobRunner: reduce > reduce
14/09/24 09:40:04 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
14/09/24 09:40:05 INFO mapred.JobClient: map 100% reduce 100%
14/09/24 09:40:05 INFO mapred.JobClient: Job complete: job_local_0001
14/09/24 09:40:05 INFO mapred.JobClient: Counters: 22
14/09/24 09:40:05 INFO mapred.JobClient: Map-Reduce Framework
14/09/24 09:40:05 INFO mapred.JobClient: Spilled Records=22
14/09/24 09:40:05 INFO mapred.JobClient: Map output materialized bytes=226
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input records=11
14/09/24 09:40:05 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Map input records=13
14/09/24 09:40:05 INFO mapred.JobClient: SPLIT_RAW_BYTES=238
14/09/24 09:40:05 INFO mapred.JobClient: Map output bytes=192
14/09/24 09:40:05 INFO mapred.JobClient: Reduce shuffle bytes=0
14/09/24 09:40:05 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input groups=4
14/09/24 09:40:05 INFO mapred.JobClient: Combine output records=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce output records=8
14/09/24 09:40:05 INFO mapred.JobClient: Map output records=11
14/09/24 09:40:05 INFO mapred.JobClient: Combine input records=0
14/09/24 09:40:05 INFO mapred.JobClient: CPU time spent (ms)=0
14/09/24 09:40:05 INFO mapred.JobClient: Total committed heap usage (bytes)=813170688
14/09/24 09:40:05 INFO mapred.JobClient: File Input Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Read=216
14/09/24 09:40:05 INFO mapred.JobClient: FileSystemCounters
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_READ=586
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_WRITTEN=122093
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_READ=1658
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=202
14/09/24 09:40:05 INFO mapred.JobClient: File Output Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Written=202
Beijing Red Star Beijing
Beijing Rising Beijing
Bank of Beijing Beijing
Guangzhou Honda Guangzhou
Guangzhou Development Bank Guangzhou
Shenzhen Thunder Shenzhen
Tencent Shenzhen
MapReduce编程系列 — 6:多表关联的更多相关文章
- MapReduce编程系列 — 5:单表关联
1.项目名称: 2.项目数据: chile parentTom LucyTom JackJone LucyJone JackLucy MaryLucy Ben ...
- 【原创】MapReduce编程系列之表连接
问题描述 需要连接的表如下:其中左边是child,右边是parent,我们要做的是找出grandchild和grandparent的对应关系,为此需要进行表的连接. Tom Lucy Tom Jim ...
- 【原创】MapReduce编程系列之二元排序
普通排序实现 普通排序的实现利用了按姓名的排序,调用了默认的对key的HashPartition函数来实现数据的分组.partition操作之后写入磁盘时会对数据进行排序操作(对一个分区内的数据作排序 ...
- MapReduce编程系列 — 4:排序
1.项目名称: 2.程序代码: package com.sort; import java.io.IOException; import org.apache.hadoop.conf.Configur ...
- MapReduce编程系列 — 3:数据去重
1.项目名称: 2.程序代码: package com.dedup; import java.io.IOException; import org.apache.hadoop.conf.Configu ...
- MapReduce编程系列 — 2:计算平均分
1.项目名称: 2.程序代码: package com.averagescorecount; import java.io.IOException; import java.util.Iterator ...
- MapReduce编程系列 — 1:计算单词
1.代码: package com.mrdemo; import java.io.IOException; import java.util.StringTokenizer; import org.a ...
- MapReduce 编程 系列九 Reducer数目
本篇介绍怎样控制reduce的数目.前面观察结果文件,都会发现通常是以part-r-00000 形式出现多个文件,事实上这个reducer的数目有关系.reducer数目多,结果文件数目就多. 在初始 ...
- MapReduce 编程 系列七 MapReduce程序日志查看
首先,假设须要打印日志,不须要用log4j这些东西,直接用System.out.println就可以,这些输出到stdout的日志信息能够在jobtracker网站终于找到. 其次,假设在main函数 ...
随机推荐
- COALESCE在SQL拼接中的大用途
SQL拼接可以使得代码比较灵活,不会那么死板,对于维护也比较方便. 下面是简单的SQL拼接,同时也包含了隐式游标的概念吧,可以遍历表中的每一个字段 -------------------------- ...
- MySQL主从同步报Client requested master to start replication from position
数据库版本:5.6.16 测试环境MySQL 主从,数据库被人重启,忘记开启start slave,导致主从失效,停了一天的数据没有追上. 查看从库的数据库状态:show slave stat ...
- .NET平台技术体系梳理+初学者学习路径推荐+我们的愿景与目标
文章出自:http://www.cnblogs.com/ice-river/p/3475041.html 一 .NET平台技术体系梳理 .NET平台应用领域众多(桌面开发,web开发,移动开发),不断 ...
- vim使用手册
1. 关于Vim 1.1 Vim的几种模式 2. 启动Vim 3. 文档操作 4. 光标的移动 4.1 基本移动 4.2 翻屏 4.3 标记 5. 插入文本 5.1 基本插入 5.2 改写插入 6. ...
- 二、有限状态机(FSM)
1.状态机的作用?是什么? 状态机,顾名思义就是用来描述状态的.完善一点就是在同一的时钟下.更准确说是一种verilogHDL编程思想. 例如我们每一个系统都可以分为好几种状态,如:开始,初始化,运行 ...
- JPA学习---第四节:JPA实例与JPA主键生成策略
1.编写实体类,代码如下: package learn.jpa.bean; import javax.persistence.Entity; import javax.persistence.Gene ...
- COCOS2DX2.2.2 创建CCEditBox输入框架实现文本及密码输入
本文转载于: http://5.quanpao.com/?p=561 使用CCEditBox需要启用扩展库既extension ,因此需要引入这个空间名 有两种方法, using namespace ...
- 不借助jquery封装好的ajax,你能用js手写ajax框架吗
不借助jquery封装好的ajax,你能手写ajax框架吗?最基础的ajax框架,一起来围观吧. .创建XMLHttpRequest对象 var xhr = new XMLHttpRequest(); ...
- 设置google搜索打开链接时在新标签页显示
百度的搜索结果,打开链接都会在新的页面打开,但是google却直接在本页面打开,有时候我们打开的不一定是自己想要结果,又习惯性的把当前页面给关掉了......这只是习惯问题,可能国人有这个习惯.怎么设 ...
- SET FOREIGN_KEY_CHECKS=0;在Mysql中取消外键约束。
SET FOREIGN_KEY_CHECKS=0;在Mysql中取消外键约束.