一、JSON 数据准备

首先准备一份 JSON 数据,这份数据共有 3560 条内容,每条内容结构如下:

本示例主要是以 tz(timezone 时区) 这一字段的值,分析这份数据里时区的分布情况。

二、将 JSON 数据转换成 Python 字典

代码如下:

三、统计 tz 值分布情况,以“时区:总数”的形式生成统计结果

要想达到这一目的,需要先将 records 转换成 DataFrame,DataFrame 是 Pandas 里最重要的数据结构,它可以将数据以表格的形式表示;然后用 value_counts() 方法汇总:

四、根据统计结果生成条形图

生成条形图之前,为了数据的完整,可以给结果中缺失的时区添加一个值(这里用Missing表示),而每条时区内容里缺失的值也需要添加一个未知的值(这里用Unknown表示):
然后使用 plot() 方法既可生成条形图:

到这里就是一个完整的处理 JSON 数据生成统计结果和条形图的例子;不过还可以对这份统计结果进行进一步的处理,以得到更加详细的结果。


每条数据里还有一个 agent 值,即浏览器的 USER_AGENT 信息,通过这一信息可以得知所使用的操作系统,所以对上一步生成的统计结果还可以按操作系统的不同加以区分。
agent 值:

五、将条形图以操作系统(Windows/非Windows)加以区分

不是所有的数据都有 a 这个字段,首先过滤掉没有 agent 值的数据;

然后根据时区和操作系统列表对数据分组,然后

对分组结果进行计数:

最后选择出现次数最多的10个时区的数据

生成一张条形图:

这样就得到了以不同操作系统加以区分的条形图统计结果:
 

利用Python进行数据分析(2) 尝试处理一份JSON数据并生成条形图的更多相关文章

  1. 《利用python进行数据分析》读书笔记--第六章 数据加载、存储与文件格式

    http://www.cnblogs.com/batteryhp/p/5021858.html 输入输出一般分为下面几类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据.利用Web API ...

  2. 《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)

    http://www.cnblogs.com/batteryhp/p/5046433.html 5.示例:usda食品数据库 下面是一个具体的例子,书中最重要的就是例子. #-*- encoding: ...

  3. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  4. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  5. $《利用Python进行数据分析》学习笔记系列——IPython

    本文主要介绍IPython这样一个交互工具的基本用法. 1. 简介 IPython是<利用Python进行数据分析>一书中主要用到的Python开发环境,简单来说是对原生python交互环 ...

  6. 利用Python进行数据分析_Pandas_数据加载、存储与文件格式

    申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认 ...

  7. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  8. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  9. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

随机推荐

  1. 清空Github上某个文件的历史版本

    title: 清空Github上某个文件的历史版本 author: 青南 date: 2015-01-08 16:04:53 categories: [经验] tags: [Github,histor ...

  2. SQL Server-表表达式基础回顾(二十四)

    前言 从这一节开始我们开始进入表表达式章节的学习,Microsoft SQL Server支持4种类型的表表达式:派生表.公用表表达式(CTE).视图.内嵌表值函数(TVF).简短的内容,深入的理解, ...

  3. C++中的const

    一,C++中const的基本知识 1.C++中const的基本概念 1.const是定义常量的关键字,表示只读,不可以修改. 2.const在定义常量的时候必须要初始化,否则报错,因为常量无法修改,只 ...

  4. zookeeper源码分析之二客户端启动

    ZooKeeper Client Library提供了丰富直观的API供用户程序使用,下面是一些常用的API: create(path, data, flags): 创建一个ZNode, path是其 ...

  5. C#向PPT文档插入图片以及导出图片

    PowerPoint演示文稿是我们日常工作中常用的办公软件之一,而图片则是PowerPoint文档的重要组成部分,那么如何向幻灯片插入图片以及导出图片呢?本文我将给大家分享如何使用一个免费版Power ...

  6. .NET跨平台之运行与Linux上的Jexus服务器

    谈及.NET跨平台,已经不是什么稀奇的事儿.今天我们就以Jexus服务器的部署为例.简单示范下.在这里,我用VMWare虚拟机来搭建Linux运行环境. Linux,我们选择CentOS7.大家可以前 ...

  7. python 数据类型 ---文件一

    1.文件的操作流程: 打开(open), 操作(read,write), 关闭(close) 下面分别用三种方式打开文件,r,w,a 模式 . "a"模式将不会覆盖原来的文件内容, ...

  8. RabbitMQ + PHP (一)入门与安装

    RabbitMQ: 1.是实现AMQP(高级消息队列协议)的消息中间件的一种. 2.主要是为了实现系统之间的双向解耦而实现的.当生产者大量产生数据时,消费者无法快速消费,那么需要一个中间层.保存这个数 ...

  9. 14门Linux课程,打通你Linux的任督二脉!

    Linux有很多优点:安全.自主.开源--,也正是这些优点使得很多人都在学Linux. 虽说网上有大把的Linux课程资源,但是对很多小白来说网上的课程资源比较零散并不适合新手学习. 正因为此,总结了 ...

  10. TCP/IP之Nagle算法与40ms延迟

    Nagle算法是针对网络上存在的微小分组可能会在广域网上造成拥塞而设计的.该算法要求一个TCP连接上最多只能有一个未被确认的未完成的小分组,在该分组确认到达之前不能发送其他的小分组.同时,TCP收集这 ...