题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1551

题意:

给出一段序列, 删除其中一段连续的子序列(或者不删), 使得剩下的序列的最长上升连续子序列最大。

题解:

1.对于要删除的的子序列而言,要么夹在答案序列中间,要么在外面(删与不删对答案都没影响)。所以总体而言,答案序列被分成左右两半。

2.用SL[i]记录从左边起以a[i]为结尾的最长上升连续子序列的长度, SR记录从右边起以a[i]为开始的最长上升连续子序列的长度。

3.枚举SR[i],用线段树找出最大的SL[x](x的下标小于i),即SL[x]和SR[x]构成一段完整的序列, 期间一直更新线段树。

学习之处:

1.线段树/树状数组的动态使用,即边查询边更新。

类似的题: http://blog.csdn.net/DOLFAMINGO/article/details/65643894

2.RMQ/线段树/树状数组的静态使用,即build()之后值进行查询操作。

相关的题:http://blog.csdn.net/DOLFAMINGO/article/details/68953809       http://blog.csdn.net/dolfamingo/article/details/70306529

线段树:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = +; int a[maxn], SL[maxn], SR[maxn], MAX[maxn<<];
int n; void update(int rt, int l, int r, int pos)
{
if(l==r)
{
MAX[rt] = max(MAX[rt], SL[pos]);
return;
} int mid = (l+r)>>;
if(a[pos]<=mid) update(rt*, l, mid, pos);
else update(rt*+ ,mid+, r, pos); MAX[rt] = max(MAX[rt*], MAX[rt*+]);
} int query(int rt, int l, int r, int x, int y)
{
if(x<=l && y>= r)
return MAX[rt]; int mid = (l+r)>>, ret = ;
if(x<=mid) ret = max(ret, query(rt*, l, mid, x, y));
if(y>=mid+) ret = max(ret, query(rt*+, mid+, r, x, y));
return ret;
} void solve()
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); SL[] = SR[n] = ;
for(int i = ; i<=n; i++)
SL[i] = (a[i]>a[i-]?SL[i-]+:);
for(int i = n-; i>; i--)
SR[i] = (a[i]<a[i+]?SR[i+]+:); int ans = ;
for(int i = ; i<=n; i++)
{
int tmp = ;
if(a[i]>) tmp = query(, , , , a[i]-); ans = max(ans,SR[i]+tmp);
update(, , , i); }
printf("%d\n",ans);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
ms(SL,);
ms(SR,);
ms(MAX,);
solve();
}
}

树状数组:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = +; int a[maxn], SL[maxn], SR[maxn], c[maxn];
int n; int lowbit(int x)
{
return x&(-x);
} void add(int x, int d)
{
while(x<maxn)
{
c[x] = max(c[x],d);
x += lowbit(x);
}
} int sumc(int x)
{
int s = ;
while(x>)
{
s = max(s,c[x]);
x -= lowbit(x);
}
return s;
} void solve()
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); SL[] = SR[n] = ;
for(int i = ; i<=n; i++)
SL[i] = (a[i]>a[i-]?SL[i-]+:);
for(int i = n-; i>; i--)
SR[i] = (a[i]<a[i+]?SR[i+]+:); int ans = ;
for(int i = ; i<=n; i++)
{
int tmp = ;
if(a[i]>) tmp = sumc(a[i]-); ans = max(ans,SR[i]+tmp);
add(a[i],SL[i]); }
printf("%d\n",ans);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
ms(SL,);
ms(SR,);
ms(c,);
solve();
}
}

CSU - 1551 Longest Increasing Subsequence Again —— 线段树/树状数组 + 前缀和&后缀和的更多相关文章

  1. CSU 1551 Longest Increasing Subsequence Again(树状数组 或者 LIS变形)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1551 升级版:Uva 1471 题意: 让你求删除一段连续的子序列之后的LIS. 题 ...

  2. csu 1551: Longest Increasing Subsequence Again BIT + 思维

    预处理last[i]表示以第i个开始,的合法后缀. pre[i]表示以第i个结尾,的合法前缀. 那么每一个数a[i],肯定是一个合法后缀last[i] + 一个合法前缀,那么合法前缀的数字要小于a[i ...

  3. CSUOJ 1551 Longest Increasing Subsequence Again

    1551: Longest Increasing Subsequence Again Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 75  Solved ...

  4. FZU2013 A short problem —— 线段树/树状数组 + 前缀和

    题目链接:https://vjudge.net/problem/FZU-2013  Problem 2013 A short problem Accept: 356    Submit: 1083Ti ...

  5. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  6. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  7. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  8. Dynamic Programming | Set 3 (Longest Increasing Subsequence)

    在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Opti ...

  9. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

随机推荐

  1. 关于udo3d双目相机的嵌入式板子系统重装

    遇到的问题: 1.下载压缩文件(.rar):在linux下下载一会就会停止 原因:linux下不支持.rar文件的下载,在windows下载即可 2.在windows下解压文件,结果为镜像文件(.im ...

  2. gitlab详解

    a.安装并创建用户 yum -y install curl policycoreutils policycoreutils-python openssh-server openssh-clients ...

  3. 弹出层layer演示 以及在编写弹出层时遇到的错误

    实现的功能: 首先第一步 在官方下载layer的文件.layUI官网:http://layer.layui.com/     http://layer.layui.com/ layer文件的下载步骤如 ...

  4. iOS -- SKScene类

      SKScene类 继承自 SKEffectNode:SKNode:UIResponder:NSObject 符合 NSCoding(SKNode)NSCopying(SKNode)NSObject ...

  5. RNN推导

    http://www.cnblogs.com/YiXiaoZhou/p/6058890.html RNN求解过程推导与实现 RNN LSTM BPTT matlab code opencv code ...

  6. Pixhawk之姿态解算篇(1)_入门篇(DCM Nomalize)

    一.开篇 慢慢的.慢慢的.慢慢的就快要到飞控的主要部分了,飞控飞控就是所谓的飞行控制呗,一个是姿态解算一个是姿态控制,解算是解算,控制是控制,各自负责各自的任务.我也不懂.还在学习中~~~~ 近期看姿 ...

  7. 七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC 【转】

    http://www.cnblogs.com/powertoolsteam/p/MVC_one.html 系列文章 七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC 七天学会A ...

  8. ZooKeeper 授权验证

    ZooKeeper 授权验证 学习了:https://blog.csdn.net/liuyuehu/article/details/52121755 zookeeper可以进行认证授权:

  9. POJ 3978(求素数)

    知识点:      1.求素数的test,从2~sqrt(n):           2.假设数据非常多,能够用素数表记录,然后sum=prime[m]-prime[n]求得! ! !! !!! !! ...

  10. MRP routing设置释疑

    Jeffer9@gmail.com         工艺是指在不同工作中心执行的作业序列         作业的详细信息 Number of cycles 在该工作中心操作几个循环 Number of ...