前言

           以下内容是个人学习之后的感悟,转载请注明出处~

Batch归一化

  在神经网络中,我们常常会遇到梯度消失的情况,比如下图中的sigmod激活函数,当离零点很远时,梯度基本为0。为了

解决这个问题,我们可以采用Batch归一化。

  通过BN法,我们将每层的激活值都进行归一化,将它们拉到均值为0、方差为1的区域,这样大部分数据都从梯度趋于0变

换到中间梯度较大的区域,如上图中红线所示,从而解决梯度消失的问题。但是做完归一化后,函数近似于一个线性函数,多

层网络相当于一层,这不是我们想要的效果,故又加入了两个参数γ、β,整体步骤如下所示:

  参数的加入固然可以解决问题,但是如何求解参数又增加了任务量。求法很简单,和求Wx+b中的W、b参数一样,不断

迭代减去代价函数对于Υ、β的倒数。

此算法的优势:

(1) 可以使用更高的学习率。如果每层的scale不一致,实际上每层需要的学习率是不一样的,同一层不同维度的scale往往也需

要不同大小的学习率,通常需要使用最小的那个学习率才能保证损失函数有效下降,Batch Normalization将每层、每维的scale

保持一致,那么我们就可以直接使用较高的学习率进行优化。

(2) 移除或使用较低的dropout。 dropout是常用的防止overfitting的方法,而导致overfit的位置往往在数据边界处,如果初始化权重

就已经落在数据内部,overfit现象就可以得到一定的缓解。论文中最后的模型分别使用10%、5%和0%的dropout训练模型,与之前

的40%-50%相比,可以大大提高训练速度。

(3) 降低L2权重衰减系数。 还是一样的问题,边界处的局部最优往往有几维的权重(斜率)较大,使用L2衰减可以缓解这一问题,

现在用了Batch Normalization,就可以把这个值降低了,论文中降低为原来的5倍。

(4) 取消Local Response Normalization层。 由于使用了一种Normalization,再使用LRN就显得没那么必要了。而且LRN实际上

也没那么work。

(5) 减少图像扭曲的使用。 由于现在训练epoch数降低,所以要对输入数据少做一些扭曲,让神经网络多看看真实的数据。

 

  

以上是全部内容,如果有什么地方不对,请在下面留言,谢谢~

深度学习之Batch归一化的更多相关文章

  1. 深度学习中 Batch Normalization

    深度学习中 Batch Normalization为什么效果好?(知乎) https://www.zhihu.com/question/38102762

  2. 深度学习之Batch Normalization

    在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数 ...

  3. 关于深度学习之中Batch Size的一点理解(待更新)

    batch 概念:训练时候一批一批的进行正向推导和反向传播.一批计算一次loss mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的. 以下来 ...

  4. 【深度学习】批归一化(Batch Normalization)

    BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网 ...

  5. 深度学习中 Batch Normalization为什么效果好

    看mnist数据集上其他人的CNN模型时了解到了Batch Normalization 这种操作.效果还不错,至少对于训练速度提升了很多. batch normalization的做法是把数据转换为0 ...

  6. 深度学习中batch normalization

    目录 1  Batch Normalization笔记 1.1  引包 1.2  构建模型: 1.3  构建训练函数 1.4  结论 Batch Normalization笔记 我们将会用MNIST数 ...

  7. 深度学习面试题21:批量归一化(Batch Normalization,BN)

    目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于201 ...

  8. 算法工程师<深度学习基础>

    <深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...

  9. AI面试必备/深度学习100问1-50题答案解析

    AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net ...

随机推荐

  1. 7.2 HAVING子句

    7.2 HAVING子句正在更新内容.请稍后

  2. [笔记] 精通正则表达式/Mastering Regular Expressions

    / 匹配<emphasis>这个tag标注的IP地址的RE:‘<emphasis>([0-9]+(\.[0-9]+){3})</emphasis>' / 锚定--a ...

  3. PE添加Style

       1. <style id="NumberStyle"> <setting> <param name="option"> ...

  4. 不为客户连接创建子进程的并发回射服务器( poll实现 )

    前言 在上文中,我使用select函数实现了不为客户连接创建子进程的并发回射服务器( 点此进入 ).但其中有个细节确实有点麻烦,那就是还得设置一个client数组用来标记select监听描述符集中被设 ...

  5. js比较3个数字的大小

    <script> var a = [1, 5, 2, 123, 34, 43, 7]; var i = j = t = 0; //sort方法, 推荐使用 a.sort(function( ...

  6. Java中的枚举类为何不能有public构造器

    声明:本博客为原创博客.未经同意.不得转载!原文链接为http://blog.csdn.net/bettarwang/article/details/27262809. 从Java 5開始有了枚举类, ...

  7. 解决Pods Unable to find a specification for `xxxxx`问题

    错误信息为 Unable to find a specification for *RMQClient* (~> 1.x.x) depended upon by Podfile 刚开始以为这个已 ...

  8. spring IOC(转)

    原文 http://stamen.iteye.com/blog/1489223 引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础 ...

  9. codeforces776D

    传送门 这题的意思就是原本有一个长度为n的01串,再给出m的长度为n的01串,要求你判定是否可以通过原串与m个串中的某些串xor使得原串到达一个状态.n,m小于1e5. 这题最初我发现不可做,因为这貌 ...

  10. 【USACO OPEN 10】hop

    奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N. 就像任何一个好游戏一样,这样的跳格子游戏也 ...