bzoj3456
分治+ntt
设dp[i]表示i个点的图联通的方案数
那么考虑dp,利用容斥,总-不符合,枚举j=1->i-1,然后考虑不符合,那么考虑和1联通的连通块,剩下的不和1连通,那么dp[i]=2^t(i)-∑j=1->i-1 dp[j]*C(i-1,j-1)*2^t(i-j)
就是t(i)表示i个点的图的边的个数,那么相当于在j个点的连通图又添加了i-j个点,计算从i-1选出j-1个方案数,这是组合数,然后剩下的不能喝这j个点连,那么自己内部随便连,就是这个式子
但是这是n^2的,我们化简式子变成卷积,dp[j]*C(i-1,j-1)*2^t(i-j)
dp[j]*(i-1)!/(j-1)!/(i-j)!*2^t(i-j)
(dp[j]/(j-1)!)*2^t(i-j)/(i-j)
这是卷积,但是由于dp[i]和dp[j]有关,那么用cdq优化。
这是第二次写,还是搞不太清楚下标问题,其实就是构造多项式的时候每个式子个往前移了多少,那么最后统计的时候也往后移动多少
完全不卡常啊
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , P = ;
int n, m, k;
ll h[N], a[N], b[N], inv[N], facinv[N], fac[N], dp[N], t[N];
ll power(ll x, ll t)
{
ll ret = ;
for(; t; t >>= , x = x * x % P) if(t & ) ret = ret * x % P;
return ret;
}
void ntt(ll *a, int f)
{
for(int i = ; i < n; ++i)
{
int t = ;
for(int j = ; j < k; ++j) if(i >> j & ) t |= << (k - j - );
if(i < t) swap(a[i], a[t]);
}
for(int l = ; l <= n; l <<= )
{
ll w = power(, f == ? (P - ) / l : (P - ) - (P - ) / l);
int m = l >> ;
for(int i = ; i < n; i += l)
{
ll t = ;
for(int k = ; k < m; ++k, t = t * w % P)
{
ll x = a[i + k], y = a[i + k + m] * t % P;
a[i + k] = (x + y) % P;
a[i + k + m] = ((x - y) % P + P) % P;
}
}
}
if(f == -)
{
ll inv = power(n, P - );
for(int i = ; i < n; ++i) a[i] = a[i] * inv % P;
}
}
void cdq(int l, int r)
{
if(l == r) return;
int mid = (l + r) >> ;
cdq(l, mid);
n = ;
k = ;
while(n <= r - l + ) n <<= , ++k;
for(int i = ; i < n; ++i) a[i] = b[i] = ;
for(int i = l; i <= mid; ++i) a[i - l] = dp[i] * facinv[i - ] % P;
for(int i = ; i <= r - l; ++i) b[i] = h[i] * facinv[i] % P;
ntt(a, );
ntt(b, );
for(int i = ; i < n; ++i) a[i] = a[i] * b[i] % P;
ntt(a, -);
for(int i = mid + ; i <= r; ++i) dp[i] = ((dp[i] - a[i - l] * fac[i - ] % P) % P + P) % P;
cdq(mid + , r);
}
int main()
{
scanf("%d", &m);
fac[] = facinv[] = ;
inv[] = inv[] = ;
for(int i = ; i <= m; ++i)
{
if(i != ) inv[i] = (P - P / i) * inv[P % i] % P;
fac[i] = fac[i - ] * i % P;
facinv[i] = facinv[i - ] * inv[i] % P;
t[i] = (ll)i * (i - ) >> ;
dp[i] = h[i] = power(, t[i]);
}
cdq(, m);
printf("%lld\n", dp[m]);
return ;
}
bzoj3456的更多相关文章
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- 【bzoj3456】城市规划(多项式求逆+dp)
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- BZOJ3456 城市规划(多项式求逆)
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...
- 【BZOJ3456】城市规划(生成函数,多项式运算)
[BZOJ3456]城市规划(生成函数,多项式运算) 题面 求\(n\)个点的无向连通图个数. \(n<=130000\) 题解 \(n\)个点的无向图的个数\(g(n)=2^{C_n^2}\) ...
- 【BZOJ3456】城市规划 多项式求逆
[BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...
- BZOJ3456:城市规划——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3456 求出n个点的简单(无重边无自环)无向连通图数目 模数很熟悉,先敲一个NTT. 然后通过推导式 ...
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- BZOJ3456 城市规划 【多项式求逆】
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...
- BZOJ3456 城市规划 【分治NTT】
题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直 ...
随机推荐
- kubernetes对象之deployment
系列目录 简述 Deployment为Pod和ReplicaSet提供了一个声明式定义(declarative)方法,用来替代以前的ReplicationController来方便的管理应用.典型的应 ...
- HashSet、LinkHashSet、TreeSet总结
HashSet:散列集,集合中的元素不允许重复,但是不要求顺序,输出的顺序和进入HashSet的顺序是没有关系的 LinkedHashSet :链表散列集,集合中的元素不允许重复,同时要求和进入Set ...
- 隐私问题成O2O绊脚石,加强行业监管迫在眉睫
这年头,O2O的发展越来越给力了.因为O2O能充分结合互联网经济的线上优势和传统经济的线下优势,因此,传统商户纷纷借助O2O来开展业务,取得了不俗的成绩.只是,在移动互联网越来越"开 ...
- 从TFS中的现有项目复制一份作为新项目,导致提交的服务器无法加载
解决方案: 1.编辑 .csproj文件,改为自己的名字 2.取消解绑
- 九度OJ 1094:String Matching(字符串匹配) (计数)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1259 解决:686 题目描述: Finding all occurrences of a pattern in a text is a p ...
- 美化你的APP——从Toolbar開始
Toolbar是什么 Toolbar是Google在Android 5.0中推出的一款替代ActionBar的View.ActionBar必须得作为Activity内容的一部分,而Toolbar能够放 ...
- 怎样把word直接转换成ppt
- javascript 正则表达式 详细入门教程
1.什么是正则表达式 定义: 一个用来搜索.匹配.处理一些符合特定语法规则的一个强大的字符串处理工具. 用途: 进行特定字符和字符串的搜索 替换字符串中指定的字符或字符串 验证字符串是否符合需求 2. ...
- 【React系列】Props 验证
Props 验证使用 propTypes,它可以保证我们的应用组件被正确使用,React.PropTypes 提供很多验证器 (validator) 来验证传入数据是否有效.当向 props 传入无效 ...
- 官方文档Core Technologies - Part 1
首先介绍系列文章内容及Spring Framework官方文档情况. 在这一系列学习中,我阅读的主要资源是5.1.2 Reference Doc.,以及论坛大神的讲解blog.另外,Spring官方也 ...