题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式:
输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例
输入样例#1: 复制
4
4 5 9 4
输出样例#1: 复制
43

贪心是不行的-.-

最小值 f[i][j]为区间i-j上合并的最小值,则f[i][j]可以通过枚举中间的点k来更新

f[i][j]=min(f[i][j],f[i][k]+f[i][k+1]+sum(i,j))

sum可以使用前缀和

最大值同理

注意这是一个环,用2n的空间存成一条即可

#include<iostream>
using namespace std; const int MAXN=2000;
const int INF=1<<20;
int n;
int a[MAXN],s[MAXN],f[MAXN][MAXN],g[MAXN][MAXN]; int sum(int x,int y){
return s[y]-s[x-1];
} int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i]; }
for(int i=1;i<=n*2;i++){
s[i]=s[i-1]+a[i];
}
for(int i=2*n;i>=1;i--){
for(int j=i+1;j<i+n;j++){
f[i][j]=INF;
for(int k=i;k<j;k++){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum(i,j));
g[i][j]=max(g[i][j],g[i][k]+g[k+1][j]+sum(i,j));
}
}
}
int mnans=INF,mxans=-INF;
for(int i=1;i<=n;i++){
mnans=min(mnans,f[i][i+n-1]);
mxans=max(mxans,g[i][i+n-1]);
}
cout<<mnans<<endl<<mxans;
return 0;
}

[LUOGU] P1880 [NOI1995]石子合并的更多相关文章

  1. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  2. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  3. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  4. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  5. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  6. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  7. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  8. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  9. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

随机推荐

  1. 笔记-JavaWeb学习之旅7

    JavaScript基础 概念:一门客户端脚本语言,运行在客户端浏览器中,每一个浏览器都有JavaScript的解析引擎,是一个脚本语言,不需要编译,直接就可以被浏览器解析执行. JavaScript ...

  2. SQL必知必会03 计算字段 获取当前日期时间 日期时间格式化

  3. C# 面向对象之面向接口

    接口的定义 与类不同的是接口用interface关键字 (1)接口中所有成员不能添加任何修饰符,默认为public,如果显示指定修饰符将会出现编译错误; (2)接口中不能包含字段.运算符重载.实例构造 ...

  4. mac下启动lnmp的方式

    mac air 系列由于各种原因使得我不得不重启,重启后发现lnmp全部都关闭了, nginx: sudo nginx   php-fpm: sudo php-fpm mysql: cd /usr/l ...

  5. 判断EditText输入的字符串中是否包含有emoji表情

    我们在实际的开发中经常需要用到EditText 但是有一个不好的地方就是我们在前端用EditText输入了带有emoji表情的字符串之后 服务器是无法识别的,这就需要我们前端根据需求来决定表情的去留, ...

  6. 如何查找Oracle某列值相同的字段

    相关的sql语句如下 select xm_guidfrom T_NZYDKgroup by xm_guidhaving count (*)>1

  7. Java GUI setSize()、setPreferredSize()的区别

    setSize().setPreferredSize()都可以设置组件的大小,但二者的使用有所不同. 1.setSize()的使用方式 setSize(int width,int height) se ...

  8. 优秀Java程序员的四大忌,你避免了吗?

    做为一名优秀的程序员需要具备永不放弃的精神,如果一个程序员不具备这种永不放弃的精神,那么这个程序员只能算是一名假程序员.而通往成功的道路上往往是不平坦的,想要成为一个合格的高级Java程序员,需要规避 ...

  9. Java 图形界面开发--图文并茂建立学生管理系统

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/50932501 冷血之心的博客) 图形用户界面(Graphics U ...

  10. SVN提交文件冲突怎么办?

    SVN文件遇到冲突怎么解决: 1. 文件出现这个图标提示后,你先把这个文件备份,备份到其他目录. 2. 把SVN目录下的这个文件还原为服务器上的最新版本或者直接删除重新更新到最新版本. 3. 把你备份 ...