题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式:
输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例
输入样例#1: 复制
4
4 5 9 4
输出样例#1: 复制
43

贪心是不行的-.-

最小值 f[i][j]为区间i-j上合并的最小值,则f[i][j]可以通过枚举中间的点k来更新

f[i][j]=min(f[i][j],f[i][k]+f[i][k+1]+sum(i,j))

sum可以使用前缀和

最大值同理

注意这是一个环,用2n的空间存成一条即可

#include<iostream>
using namespace std; const int MAXN=2000;
const int INF=1<<20;
int n;
int a[MAXN],s[MAXN],f[MAXN][MAXN],g[MAXN][MAXN]; int sum(int x,int y){
return s[y]-s[x-1];
} int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i]; }
for(int i=1;i<=n*2;i++){
s[i]=s[i-1]+a[i];
}
for(int i=2*n;i>=1;i--){
for(int j=i+1;j<i+n;j++){
f[i][j]=INF;
for(int k=i;k<j;k++){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum(i,j));
g[i][j]=max(g[i][j],g[i][k]+g[k+1][j]+sum(i,j));
}
}
}
int mnans=INF,mxans=-INF;
for(int i=1;i<=n;i++){
mnans=min(mnans,f[i][i+n-1]);
mxans=max(mxans,g[i][i+n-1]);
}
cout<<mnans<<endl<<mxans;
return 0;
}

[LUOGU] P1880 [NOI1995]石子合并的更多相关文章

  1. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  2. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  3. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  4. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  5. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  6. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  7. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  8. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  9. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

随机推荐

  1. 学习Mahout(二)

    继续上一篇博客. 这篇博客介绍如何跑一下mahout自带的Hello world程序 我将mahout 安装在/opt/hadoop/mahout-distribution-0.9 cd /opt/h ...

  2. linux 系统运行级别(转)

    Linux系统有7个运行级别(runlevel)运行级别0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启动运行级别1:单用户工作状态,root权限,用于系统维护,禁止远程登陆运行级别2:多 ...

  3. POI刷题记录

    POI2007 HNOI2018滚粗后,默默来刷POI 先从2007刷起 bzoj1103[POI2007]大都市meg bzoj1098[POI2007]办公楼biu bzoj1102[POI200 ...

  4. CATIA 使用技巧--转换出轻巧的tif格式文件

    问题描述: 我们在与客户和供应商打交道的过程中经常需要TIF格式2D图纸文件,而默认的CATIA设置保存出来TIF文件非常大,不利于保存和传送.对于该问题,我们可以通过修改CATIA的默认设置选项,将 ...

  5. 【aspnetcore】在asp.net core中配置使用AutoMapper

    网上使用AutoMapper的文章很多,就不多说了.这里主要记录一下怎么在项目中配置和使用. 首先是从NuGet获取AutoMapper. 在Startup.cs文件中注册AutoMapper服务 p ...

  6. jQuery val()方法及valHooks源码解读

    val: function( value ) { var hooks, ret, isFunction, elem = this[0]; if ( !arguments.length ) {//无参数 ...

  7. java isAssignableFrom instanceof 小结 专题

    一句话总结: isAssignableFrom()方法是从类继承的角度去判断,instanceof()方法是从实例继承的角度去判断. public native boolean isAssignabl ...

  8. handler 方法进不去,服务器上出现应用程序错误。此应用程序的当前自定义错误设置禁止远程查看

    HTTP/1.1 500 Internal Server ErrorCache-Control: privateContent-Type: text/html; charset=utf-8Server ...

  9. LeetCode 100 及 101题

    100. 相同的树 给定两个二叉树,编写一个函数来检验它们是否相同. 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的. 示例 1: 输入: 1 1 / \ / \ 2 3 2 3 [ ...

  10. uvm_sequence_item——sequence机制(一)

    让子弹飞一会 UVM框架,将验证平台和激励分开,env以下属于平台部分,test和sequence属于激励,这样各司其职.我们可以将sequence_item 比喻成子弹,sequencer 类比成弹 ...