E. Lost in WHU。矩阵快速幂!
比赛的时候一直不知道样例怎么来的,然后和队友推了一下,然后还是没什么思路,样例手推很困难,然后我随口枚举了几个算法dp、广搜、快速幂。比赛结束问了谷队长结果真的是用快速幂写。
题意:n个点,m条边,每一步可以从一个点走到与其相连的点上,求如果最多可以走T步,1到n有多少种走法。
思路:裸的矩阵快速幂,初始矩阵在输入的时候连的双向边,表示可走,但要注意从n出发的话只有单向边,题目说明走到n号节点就不能走出去了。n到n也要连一条边。然后求这个矩阵的T次方,结果就是第一行第n列的值。
int n,m,t;
struct matrix
{
ll a[101][101];
};
matrix mul(matrix A,matrix B)
{
matrix res;
memset(res.a,0,sizeof(res.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
res.a[i][j]=(res.a[i][j]+A.a[i][k]*B.a[k][j])%MOD;
return res;
}
matrix mul_pow(matrix A)
{
matrix res;
memset(res.a,0,sizeof(res.a));
for(int i=1;i<=n;i++) res.a[i][i]=1;
while(t)
{
if(t&1) res=mul(res,A);
A=mul(A,A);
t>>=1;
}
return res;
}
void solve()
{
int u,v;
matrix res;
for(int i=0; i<m; i++)
{
scanf("%d%d",&u,&v);
if(u==n) res.a[v][u]=1;
else if(v==n) res.a[u][v]=1;
else res.a[u][v]=res.a[v][u]=1;
}
res.a[n][n]=1;
scanf("%d",&t);
res=mul_pow(res);
printf("%lld\n",res.a[1][n]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
solve();
}
return 0;
}
E. Lost in WHU。矩阵快速幂!的更多相关文章
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
随机推荐
- Java编程基础-数组
一.数组的定义. 1.数组的含义:数组是一组具有相同数据类型的元素的有序集合.数组可以分为一维数组和多维数组.(数组是一个引用类型的容器,从0开始编号存储相同数据类型的数据.) 2.数组的定义语法格式 ...
- spring boot & mybatis集合的坑
因为是使用的mybatis逆向工程自动生成的实体类和dao层,然后在读取某一个表的content字段时出现问题. 问题描述:在mysql数据库里可以直接查询到这个字段的内容,但是使用java相关的方法 ...
- Ubuntu安装新英伟达驱动出现问题解决方法
ERROR: The Nouveau kernel driver is currently in use by your system. This driver is incompatible wit ...
- Number of 1 BitsWrite a function that takes an unsigned integer and returns the number of ’1' bits i
Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also know ...
- 你知道现在的.net是什么样的吗,一张图告诉你
Here are these concepts used in an example sentence, for context: Application Framework - “Are you u ...
- 在Ubuntu16.04安装YouCompleteMe
作为从事了4年多嵌入式Linux工作的软件工程师,最近决定完全在ubuntu上工作,使用vim进行代码的阅读和编辑,然后尝试去安装vim相关的各种插件.从来没用过代码补全的我,在网上找到了插件omni ...
- 设置windows status bar隐藏
info.plist View controller-based status bar appearance 为 NO CGContextSaveGState: invalid context 0x0 ...
- Objective-C分类 (category)和扩展(Extension) 的区别
http://blog.csdn.net/yhawaii/article/details/6992094 http://blog.163.com/wangy_0223/blog/static/4501 ...
- WPF中退出时显示是否保存数据提示
一.通过窗体中的按钮实现退出时数据保存提示 Xaml: <Grid> <TextBlock HorizontalAlignment="Left" Margin=& ...
- sql视图和表的区别
整理一下视图和表的区别 区别: 1.视图是已经编译好了的sql,表不是 2.视图没有实际的物理存储记录,表有 3.视图是逻辑概念,表可以进行修改 5.表是内模式,视图是外模式 6.视图是我们查看表的方 ...