题目描述

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

输入

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

输出

输出一个整数,为所求方案数。

样例输入

2 2 2 4

样例输出

3


题解

莫比乌斯反演+杜教筛

其中xi表示第i个数的取值。

然后这里就可以分块来求。

由于h的范围过大,所以需要使用杜教筛求mu的前缀和,详见 bzoj3944

#include <cstdio>
#include <map>
#define N 1000010
#define mod 1000000007
using namespace std;
typedef long long ll;
const int m = 1000000;
map<int , int> f;
map<int , int>::iterator it;
int mu[N] , sum[N] , prime[N] , tot;
bool np[N];
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int query(int n)
{
if(n <= m) return sum[n];
it = f.find(n);
if(it != f.end()) return it->second;
int i , last , ans = 1;
for(i = 2 ; i <= n ; i = last + 1) last = n / (n / i) , ans -= (last - i + 1) * query(n / i);
return f[n] = ans;
}
int main()
{
int i , j , p , k , l , r , last;
ll ans = 0;
mu[1] = sum[1] = 1;
for(i = 2 ; i <= m ; i ++ )
{
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
scanf("%d%d%d%d" , &p , &k , &l , &r) , r /= k , l = (l - 1) / k;
for(i = 1 ; i <= r ; i = last + 1)
{
last = r / (r / i);
if(l >= i) last = min(last , l / (l / i));
ans = (ans + (query(last) - query(i - 1) + mod) % mod * pow((ll)r / i - l / i , p) % mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛的更多相关文章

  1. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】

    除了最后一题都比较简单就写一起了 P4450-双亲数 题目链接:https://www.luogu.com.cn/problem/P4450 题目大意 给出\(A,B,d\)求有多少对\((a,b)\ ...

  7. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  8. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  9. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

随机推荐

  1. Python02 变量

    变量 因为Python是弱变量类型编程语言,所以变量赋值不需要类型声明. 每个变量在内存中创建,都包括变量的标识,名称和数据这些信息. 每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建. 变量 ...

  2. USACO09FEB Fair Shuttle

    题目传送门 据说\(NOIp\)前发题解可以\(\mathfrak{RP}\)++ 因为要尽可能满足更多奶牛,所以按照这种区间贪心题的套路,先按右端点排序,然后依次遍历,能坐车的就让它们坐车,这样一定 ...

  3. Java代码工具箱之控制台输出重定向_控制台输出到文件

    1. 情形:有时候控制台输出太多,在MyEclipse显示不全. 2. 说明:本代码只会重定向 system.out 的内容, error及其它不受代码影响.其它应该类似. //自定导入必要库 //然 ...

  4. LigerUI的下拉框行和树的设置(表单生成)

    http://blog.csdn.net/dxnn520/article/details/8194767 // ---------------------- // [下拉树设置 -- 单选] {dis ...

  5. DOTA自走棋卡牌及搭配阵容

    这个游戏其实就根炉石jjc和A牌轮抽一样,前期要找着质量牌抓,保证你至少不漏.根据你的需求补一些你不会上场的阵容组件,最后根据你的组件和核心紫卡来哪张来决定打什么.另外也要考虑场上另外几家,如果有一家 ...

  6. Angular 2 树节点的上下移动问题

    最近在做一个树节点的上下移动然后实现排序的问题.直接看图: 实现已选查询条件的上下移动.结合了primeng 的picklist 组件. 下面是html代码 <p-tabPanel header ...

  7. Lepus天兔数据库监控系统安装配置

    [root@redis01 ~]# cd /opt/[root@redis01 opt]# wget https://www.apachefriends.org/xampp-files/5.6.36/ ...

  8. ElasticSearch High Level REST API【2】搜索查询

    如下为一段带有分页的简单搜索查询示例 在search搜索中大部分的搜索条件添加都可通过设置SearchSourceBuilder来实现,然后将SearchSourceBuilder RestHighL ...

  9. JAVA解析XML有哪几种方法?并简述各自的优缺点

    DOM: 是用与平台和语言无关的方式表示XML文档的官方W3C标准,分析该结构通常需要加载整个文档和构造层次结构,然后才能做任何工作.是基于信息层次的 优点有:由于树在内存中是持久的,因此可以修改它以 ...

  10. 网络编程协议(TCP和UDP协议,粘包问题)以及socketserver模块

    网络编程协议 1.osi七层模型 应用层  表示层  会话层  传输层  网络层  数据链路层  物理层 2.套接字 socket 有两类,一种基于文件类型,一种基于网络类型 3.Tcp和udp协议 ...