uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)
一道打表题
我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\)
考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1\)
\(m+1\)个数的圆排列的方案数为\(m!\),然后对于每一个圆排列,肯定存在一个前缀和最小且最右边的位置,那么它后面的所有位置肯定前缀和都大于等于\(1\),而对于这个位置如果不把它放最后肯定会有前缀和小于\(1\)
所以对于每一种圆排列有且仅有一种摆放方式合法
然而此时最后的这个\(-1\)不一定是我们加进去的\(-1\),可能是原来排列里的,于是要除以\(-1\)的个数\(m+1-n\)
综上答案为\(\frac{m!}{m+1-n}\)
//minamoto
#include<cstdio>
#include<cstring>
#include<map>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
const int P=998244353;
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int n,m,x,res=1;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
fp(i,1,n)scanf("%d",&x),m+=x;
fp(i,2,m)res=mul(res,i);
res=mul(res,ksm(m-n+1,P-2));
printf("%d\n",res);
return 0;
}
uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)的更多相关文章
- UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】
题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...
- 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)
洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...
- P6672-[清华集训2016]你的生命已如风中残烛【结论】
正题 题目链接:https://www.luogu.com.cn/problem/P6672 题目大意 长度为\(m\)的序列\(a\),有\(n\)个数字不是\(0\),其他\(m-n\)个是\(0 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- BZOJ4735:你的生命已如风中残烛(组合数学)
Description 众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习.但是今天六花酱不想做数学题,于是他们开始打牌. 现在他们手上有m张不同的牌,牌有两种:普通牌和功能牌.功能牌一 ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
随机推荐
- OpenKM安装(CentOS6)
OpenKM全称是Open Knowledge Management,是一个DMS(文档管理系统).本文介绍如何在CentOS下安装它.本文的安装程序和资料全部来自OpenKM官网:http://ww ...
- Linux学习笔记--ps命令(显示当前进程的命令)
ps:英文名process,进程的意思. 1. 命令格式: ps [选项] 2. 经常使用选项: "ps -a" 显示一个终端的全部进程.除了会话引线 "ps -e&qu ...
- c#生成试卷。。。
.net下,操作Word的插件有NPOI,Spire,一版大家经常用的是NPOI,我在着手开发的时候,优先考虑的也是NPOI,然而时间比较着急,没有找到NPOI支持2003版本, 就放弃了,从网上发行 ...
- EasyRTSPClient:基于live555封装的支持重连的RTSP客户端RTSPClient
今天先简单介绍一下EasyRTSPClient,后面的文章我们再仔细介绍EasyRTSPClient内部的设计过程: EasyRTSPClient:https://github.com/EasyDar ...
- 微信分享配置(js-sdk)
现在的微信分享给朋友-分享到朋友圈 链接带有自定义的title.描述.图片,需要配置js-sdk(地址:mp.weixin.qq.com)微信文档 需要后台配置config的参数,返回给前台 1)de ...
- FICO credit score
http://www.bankrate.com/finance/credit/what-is-a-fico-score.aspx Anyone who’s ever thought about loo ...
- Javascript学习之Math对象详解
1.定义 Math 是一个内置对象, 为数学常量和数学函数提供了属性和方法. Math 不是一个函数对象 Math 不是一个构造器. Math 的所有属性和方法都是静态的 2.属性 Math.E ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- HDU3480 Division —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3480 Division Time Limit: 10000/5000 MS (Java/Others) Memory ...
- 让Outlook一直保持开启
1.将OutLook.exe注册为服务,让其一直保持开启状态 类似于TaobaoProtect.exe是由TBSecSvc服务启动的 http://stackoverflow.com/question ...