这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)2+(2b+1)2=4a2+4a+4b2+4b+2=2(2(a2+a+b2+b)+1) \)里面这个一定不是平方数因为除二后是个奇数不能再分一个2出来;偶数和偶数一定满足2,因为gcd>=2

考虑最小割,先加上所有收益然后求割之后满足条件的最小代价

所以对于a[i]&1,连接(s,i,b[i]),否则连接(i,t,b[i]),对于不能同时选的i,j来说,连(i,j),表示要么割掉i的收益要么割掉j的收益

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N=2005;
int n,a[N],b[N],h[N],cnt=1,le[N],s,t,ans;
struct qwe
{
int ne,to,va;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int r=0;
while(bfs())
r+=dfs(s,1e9);
return r;
}
int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
long long clc(int a,int b)
{
return 1ll*a*a+1ll*b*b;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=n;i++)
b[i]=read();
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
if(a[i]&1)
ins(s,i,b[i]);//,cerr<<i<<endl;
else
ins(i,t,b[i]);
ans+=b[i];
}
for(int i=1;i<=n;i++)
if(a[i]&1)
for(int j=1;j<=n;j++)
if(!(a[j]&1)&&gcd(a[i],a[j])==1&&(long long)sqrt(clc(a[i],a[j]))*(long long)sqrt(clc(a[i],a[j]))==clc(a[i],a[j]))
ins(i,j,1e9);//,cerr<<i<<" "<<j<<endl;
printf("%d\n",ans-dinic());
return 0;
}

bzoj 3158: 千钧一发【最小割】的更多相关文章

  1. bzoj 3158 千钧一发 —— 最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...

  2. BZOJ 3158 千钧一发 最小割

    分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...

  3. bzoj 3158 千钧一发(最小割)

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 767  Solved: 290[Submit][Status][Discuss] ...

  4. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  5. BZOJ 3158: 千钧一发

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1201  Solved: 446[Submit][Status][Discuss ...

  6. bzoj 3158 千钧一发——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...

  7. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  8. BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)

    题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...

  9. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

随机推荐

  1. 多用GCD,少用performSelect系列方法

    例如,要延后执行某项任务,可以有下面两种实现方式,而我们应该优先考虑第二种: // Using performSelect: withObject: afterDelay: [self perform ...

  2. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  3. mongodb学习之:数据库命令以及固定集合

    如何我们要删除一个集合,可以采用db.test.drop()的方式,其实在这背后,这个函数运行的是drop命令.可以用runCommand达到同样的效果. 我们首先新建一个集合作为测试使用: > ...

  4. python自动化运维八:Ansible

    Ansible是新出现的自动化运维工具,基于Python研发.糅合了众多老牌运维工具的优点实现了批量操作系统配置.批量程序的部署.批量运行命令等功能.仅需在管理工作站上安装ansible程序配置被管控 ...

  5. JS中奇葩的假值

    JavaScript中有 6 个值为“假”,这六个值是 false null undefined 0 '' (空字符串) NaN 这里面 false 本身是布尔类型,其它 5 个则不是. 除了这 6 ...

  6. SPOJ7258

    传送门 这题可以参考平衡树求第k大的过程,需要预处理一下从当前节点往下走能走出多少个子串. 原本准备存个图用反向的topsort,发现极为麻烦,看了别人的代码后发现,他们按step大小用了基排,省了很 ...

  7. android——array中设置选项

    Android中,R.array是提取XML资源文件中String数组的方法.具体定义和提取的方法如下: 1)在R.array中定义字符数组 <?xml version="1.0&qu ...

  8. CodeForces - 450B Jzzhu and Sequences —— 斐波那契数、矩阵快速幂

    题目链接:https://vjudge.net/problem/CodeForces-450B B. Jzzhu and Sequences time limit per test 1 second ...

  9. 人生苦短之Python类的一二三

    在Python中,类也是以class开头定义的.我们定义一个动物类,它有名字和年龄,在java变量有实例变量和局部变量,方法内的变量是局部变量,类里面的变量是实例变量.那么在Python中的类及其属性 ...

  10. Eclipse配置python环境

    主要分为四步 1.安装java环境 2.在Eclipse下安装Pydev 1)启动 Eclipse,利用 Eclipse Update Manager 安装 PyDev.在 Eclipse 菜单栏中找 ...