题意:

你现在要打\(n\)个字符,但是程序随时可能会崩溃。

你可以在恰当的时机按下 \(Ctrl-S\)键,崩溃后,会从最后一次保存的情况继续开始打字。

具体是这样的:

  • 在每个第\(i-0.1s(i>0)\)的时候,程序崩溃的概率为\(p\)
  • 在每个第\(is(i \geq 0)\)的时候,你可以一口气按下\(x\)个键来存盘
  • 在每个第\(i+0.1s(i \geq 0)\)的时候,你可以按下一个键来打字

求采取最优策略下,打完这\(n\)个字符,并且最后存盘,总按键次数的期望。

分析:

先不考虑可以存盘的情况,设\(d(i)\)为打印\(i\)个字符按键次数的期望。

有递推公式:\(d(i)=d(i-1)+1+p \cdot d(i)\)

当你打印出前\(i-1\)个字符,刚刚打完第\(i\)个的时候:

  • 有概率\(p\)会崩掉,这时候要重新开始,还需要的按键数的期望为\(d(i)\)
  • 有概率\(1-p\)没崩,打印完成了

化简一下得到:\(d(i)=\frac{1}{1-p}d(i-1)+\frac{1}{1-p}\)

然后再考虑存盘的情况,我们枚举存了\(x\)次盘,也就是把这\(n\)个字符分为\(x\)段,每打完一段就存一次盘。

由于\(\frac{1}{1-p}>1\),可以看出\(d(n)\)是指数型增长的,所以就尽可能均匀地把\(n\)个字符分成\(x\)段。

或者也可以求一下\(d(n)\)的通项公式为:\(d(n)=\frac{1}{p(1-p)^n}-\frac{1}{p}\)来验证。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 100000 + 10;
const double INF = 1e20;
double d[maxn]; int main()
{
int T; scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
int n, x; double p;
scanf("%d%lf%d", &n, &p, &x); d[0] = 0;
for(int i = 1; i <= n; i++) d[i] = (d[i - 1] + 1.0) / (1.0 - p); double ans = INF;
for(int i = 1; i <= n; i++) {
int k = n / i, r = n % i;
ans = min(ans, r*d[k+1] + (i-r)*d[k] + i*x);
} printf("Case #%d: %.6f\n", kase, ans);
} return 0;
}

HDU 5236 Article 期望的更多相关文章

  1. hdu 5236 Article 概率dp

    Article Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5236 ...

  2. HDU 5236 Article(概率DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=5236 题意:现在有人要在文本编辑器中输入n个字符,然而这个编辑器有点问题. 在i+0.1s(i>=0)的时 ...

  3. hdu 5236 Article(概率dp¥)

    Article Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. HDU 5236 Article (概率DP+贪心)

    题意:要求输入一篇N个字符的文章,对所有非负整数i:每到第i+0.1秒时可以输入一个文章字符,每到第i+0.9秒时有P的概率崩溃(回到开头或者上一个存盘点) 每到第i秒有一次机会可以选择按下X个键存盘 ...

  5. HDU 5984 数学期望

    对长为L的棒子随机取一点分割两部分,抛弃左边一部分,重复过程,直到长度小于d,问操作次数的期望. 区域赛的题,比较基础的概率论,我记得教材上有道很像的题,对1/len积分,$ln(L)-ln(d)+1 ...

  6. HDU 5570 balls 期望 数学

    balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5570 De ...

  7. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  8. hdu 5159 Card (期望)

    Problem Description There are x cards on the desk, they are numbered from 1 to x. The score of the c ...

  9. hdu 5245 Joyful(期望的计算,好题)

    Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...

随机推荐

  1. columns分栏与flex弹性盒模型

    columns  分栏 值:column-width:设置每列的宽度        column-count:设置列数   例:columns{200px 3}   列数和宽度固定        co ...

  2. Java实现将GBK编码格式的文件夹中所有文件都转化为UTF-8格式的文件,编码格式转化

    package CodeConvert; import Java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Fi ...

  3. Swing---WindowConstants

    Java桌面开发过程中,很多人都写过类似下面的代码. import javax.swing.JFrame; public class SimpleFrame { public static void ...

  4. Outlook 客户端无法通过 MAPI over HTTP协议 连接

    随着Exchange 版本更新升级,是否进行验证客户端建立MapiHttp连接所需的服务器设置已正确配置.即使服务器,负载均衡器和反向代理的所有设置都正确,您可能会遇到连接到Exchange Serv ...

  5. 轮播插件unslider.min.js使用demo

    有两种应用方式: 1.轮播图片作为<img>标签使用 HTML代码: <html> <head> <meta charset="utf-8" ...

  6. linux python升级及全局环境变量设置

    1.下载pythonwget https://www.python.org/ftp/python/3.4.5/Python-3.4.5.tgz 或者去官网下载压缩包 2.安装python3依赖yum ...

  7. python_83_random_应用验证码

    import random checkcode='' for i in range(0,5):#5位验证码 current=random.randrange(0,5) #字母 if current== ...

  8. 【转】OS X 中快速调出终端

    作者:Frank Pu链接:https://www.zhihu.com/question/20692634/answer/37152883来源:知乎著作权归作者所有,转载请联系作者获得授权. 来至 M ...

  9. How to restrict root user to access or modify a file and directory in Linux

    Now in this article I will show you steps to prevent or restrict access of root user to access certa ...

  10. 实验十三 团队作业9:Beta冲刺与团队项目验收

    实验十三 团队作业9:Beta冲刺与团队项目验收 实验时间 2019-6-20(21) Deadline: [6.20-6.26]之间任选连续3天的23:00,以团队随笔博文提交时间为准. 评分标准: ...