题目戳这里

N句话题意

有N个人,k个限制,有五种限制

如果X=1, 表示第A个小朋友的糖果必须和第B个小朋友的糖果一样多;

如果X=2, 表示第A个小朋友的糖果必须少于第B个小朋友的糖果;

如果X=3, 表示第A个小朋友的糖果必须不少于第B个小朋友的糖果;

如果X=4, 表示第A个小朋友的糖果必须多于第B个小朋友的糖果;

如果X=5, 表示第A个小朋友的糖果必须不多于第B个小朋友的糖果;

求满足所有要求需要最少的糖果数(每个人至少为1)

**Solution**

一个差分约束题目,然额本蒟蒻还不是很会。首先分析限制条件,很明显2和4,3和5是一样的限制,并且要求最少的糖果数。那么不少于(多于)我们就建0边,而要求少于(多于)我们就建权值为1的边,很明显这样所需要的糖果最少。建好图后我们只需要跑一遍最长路即可。

为什么是最长路呢?看看下面这张图,(也是盗的)。

图中dis[1]如果是最短路为1,但很显然1点至少需要两个糖果。(很显然,因为肯定得满足约束最多的条件的情况才是合法的!)。

注:后面0向1→n建边时一定要倒序。

Coding

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int head[N],n,m,cnt;
struct limit
{
int to,next;
long long w;
}e[N*5];
void add(int x,int y,long long w)
{
e[++cnt].to=y,e[cnt].next=head[x],e[cnt].w=w;
head[x]=cnt;
}
int dis[N],tot[N];
long long vis[N];
queue<int> q;
bool SPFA()
{
q.push(0);
dis[0]=0;
vis[0]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
tot[u]++;
if(tot[u]==n-1) {cout<<-1; return 0;}
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(dis[u]+e[i].w>dis[v])
{
dis[v]=dis[u]+e[i].w;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
return 1;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,opt;
scanf("%d%d%d",&opt,&x,&y);
if(opt==1) add(x,y,0),add(y,x,0);
if(opt==2)
{
if(x==y) {cout<<-1; return 0;}
add(x,y,1);
}
if(opt==3) add(y,x,0);
if(opt==4)
{
if(x==y) {cout<<-1; return 0;}
add(y,x,1);
}
if(opt==5) add(x,y,0);
}
for(int i=n;i;i--) add(0,i,1);
if(!SPFA()) return 0;
long long ans=0;
for(int i=1;i<=n;i++)
ans+=dis[i];
cout<<ans;
return 0;
}

洛谷 3275 [SCOI2011]糖果的更多相关文章

  1. BZOJ2330或洛谷3275 [SCOI2011]糖果

    BZOJ原题链接 洛谷原题链接 很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快..),所以需要优化. 我们所建立的有向图中 ...

  2. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  3. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  4. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  5. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  6. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  7. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  8. 洛谷P3275 [SCOI2011]糖果

    差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. 洛谷 P3275 [SCOI2011]糖果

    题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...

随机推荐

  1. 基于WPF系统框架设计(10)-分页控件设计

    背景 最近要求项目组成员开发一个通用的分页组件,要求是这个组件简单易用,通用性,兼容现有框架MVVM模式,可是最后给我提交的成果勉强能够用,却欠少灵活性和框架兼容性. 设计的基本思想 传入数据源,总页 ...

  2. Oracle Forms Project For Students Free Download

    After getting to much requests for a free Oracle Forms and Reports project for students, I am sharin ...

  3. 状态压缩DP常遇到的位运算

    位操作一共有6种形式:<<,>>,&,|,^,~; 1.左移操作符<<:左移操作符将整数的二进制向左移若干位,将最高若干位挤掉,并在低位补0 如: ; // ...

  4. java -jar xxx.jar

    之前用MyEclipse做了一个可执行jar,点击就可运行的. 今天突然不好用了,错误是: could not find the main class C:\123\abc.jar.Program w ...

  5. 一些绕过waf的笔记

    转自:http://fuck.0day5.com/archives/622.html 一.各种编码绕过1. ? 1 2 ?id=1 union select pass from admin limit ...

  6. kohana nginx的配置

    kohana nginx的配置 location / { if (!-e $request_filename) { rewrite ^/(.*)$ /index.php? kohana_uri=/$1 ...

  7. vue2.0 引用qrcode.js实现获取改变二维码的样式

    vue代码 <template> <div class="qart"> <div id="qrcode" ref="qr ...

  8. ThinkPHP第一课 环境搭建

    第一课 环境搭建 1.说明: ThinkPHP是一个开源的国产PHP框架,是为了简化企业级应用开发和敏捷WEB应用开发而诞生的. 最早诞生于2006年初.原名FCS.2007年元旦正式更名为Think ...

  9. 在VS2013中打开Nuget

    1.工具→NuGet程序包管理器→程序包管理控制台 2.没有的话,就去  工具→扩展和更新   搜索nuget

  10. UBUNTU : Destination Host Unreachable

    介绍我的系统的搭建的方式: WIN7 64 + VMWARE STATION,方式是进行桥接的方式.最近突然出现了问题,Ubuntu ping 外网或者 PING WIN 7 的时候,出现 Desti ...