机器学习: Canonical Correlation Analysis 典型相关分析
Canonical Correlation Analysis(CCA)典型相关分析也是一种常用的降维算法。我们知道,PCA(Principal Component Analysis) 主分量分析将数据从高维映射到低维空间同时,保证了数据的分散性尽可能地大, 也就是数据的方差或者协方差尽可能大。而LDA(Linear Discriminant Analysis) 线性判别分析则利用了类标签,利用一种监督学习的方法,将数据从高维空间映射到低维空间时,让不同类的数据尽可能地分开而同一类的数据尽可能地聚合。
但是,有的时候,我们想探讨多个线性空间之间的相关性。比如有的时候我们会从图像中提取各种特征,每一种特征都可以构成一个线性空间,为了分析这些空间之间的相关性,我们可以利用CCA 来做分析。
假设我们有两个特征空间,S1=x1∈Rd1, S2=x2∈Rd2, 我们可以将两个特征向量合并。
可以看到,Σ12=ΣT21,Σ 称为协方差矩阵。我们引入投影向量 a, b, 假设投影之后的变量满足:
可以进一步算出 u,v 的方差和协方差:
可以计算出 u,v 的相关系数:
将u,v的表达式代入,可以得到:
我们的目标是让相关系数Corr(u,v) 尽可能地大。为了求解a,b, 可以固定分母而让分子最大化,所以上面的函数可以变成:
构造拉格朗日等式:
L 分别对a,b 求导,可以得到:
根据约束条件,可以得到:
所以只要求出 λ1 或者 λ2 就可以得到最大的相关系数。令 λ=λ1=λ2.
通过上面的偏导数,我们可以得到:
写成矩阵形式:
令:
,
那么,上式可以表示成:
所以,λ 和 w 就是B−1A 的特征值和特征向量。我们可以求出 B−1A 的特征值和特征向量,然后利用特征向量将原来的特征
x1,x2做映射。对应特征值 λ 的求解,可以有更简单的方法,从上面的偏导数,我们可以得到如下等式:
我们可以利用上面的表达式求出 λ 和 a,然后再待会上面的偏导数等式求出 b.
λ 就是 u,v的相关系数,u,v 就是一对典型变量(canonical variables)。按照 B−1A 的特征值从大到小排列,可以求出一系列的典型变量。特征值越大,说明典型变量的相关性越强。
参考来源:
http://www.cnblogs.com/jerrylead/archive/2011/06/20/2085491.html
https://en.wikipedia.org/wiki/Canonical_correlation
机器学习: Canonical Correlation Analysis 典型相关分析的更多相关文章
- Jordan Lecture Note-12: Kernel典型相关分析(Kernel Canonical Correlation Analysis, KCCA).
Kernel典型相关分析 (一)KCCA 同样,我们可以引入Kernel函数,通过非线性的坐标变换达到之前CCA所寻求的目标.首先,假设映射$\Phi_X: x\rightarrow \Phi_X(x ...
- Jordan Lecture Note-11: 典型相关分析(Canonical Correlation Analysis, CCA).
典型相关分析 (一)引入 典型相关分析(Canonical Correlation Analysis)是研究两组变量之间相关关系的一种多元统计方法.他能够揭示出两组变量之间的内在联系. 我们知道,在一 ...
- 经典相关分析,典型关分析, CCA,Canonical Correlation Analysis,多元变量分析,线性组合,相关系数最大化
1.从概率论中相关系数推广而来 在概率论中,研究两个变量之间的线性相关情况时,提出了 相关系数 这个概念.做一下推广,如果研究一个变量和多个随机变量之间的线性相关关系时,提出了 全相关系数(或者复相关 ...
- 多视图学习利器----CCA(典型相关分析)及MATLAB实现
Hello,我是你们人见人爱花见花开的小花.又和大家见面了,今天我们来聊一聊多视图学习利器------CCA. 一 典型相关分析的基本思想 当我们研究两个变量x和y之间的相关关系的时候,相关系数(相关 ...
- 典型相关分析CCA计算过程
本文介绍了CCA解决的问题,CCA原理的推导过程,以及对计算结果物理意义的解释.并且通过SPSS和R操作演示了一个关于CCA的例子.数据文件下载参考[8],SPSS输出结果文件下载参考[9],R代 ...
- SPSS数据分析—典型相关分析
我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. ...
- SPSS数据分析—基于最优尺度变换的典型相关分析
传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关.数据为分类数据等情况,并且不再仅限于两个变量间的分析, 虽然 ...
- R语言 典型相关分析
1.关键点 #典型相关分析##典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系#例如 研究生入学考试成绩与本科阶段一些主要课程成绩 ...
- CCA(典型相关分析)
https://www.cnblogs.com/pinard/p/6288716.html
随机推荐
- 托管和非托管转换新方法:Marshaling Library(zz) 【转】
托管和非托管转换新方法:Marshaling Library(zz) 托管和非托管转换新方法:Marshaling Library(zz) http://hi.baidu.com/superql/bl ...
- Debian Customer PPA RFC (by quqi99)
作者:张华 发表于:2016-01-13版权声明:能够随意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 ( http://blog.csdn.net/quqi99 ) Pre ...
- Azure Mobile App - Custom Authentication
Custom Authentication: 1. For OLD Mobile Service - https://azure.microsoft.com/en-us/documentation/a ...
- bootstrap到底是用来做什么的(概念)
Bootstrap官网:http://v3.bootcss.com/ Bootstrap是Twitter推出的一个用于前端开发的开源工具包.它由Twitter的设计师Mark Otto和Jacob T ...
- Ubuntu16.04 下docker部署web项目
概念性的请戳 第一步:更新apt-get update 第二步:安装环境 apt-get install \ apt-transport-https \ ca-certificates \ curl ...
- transient、volatile关键字
transient是在对象序列化的时候,不参与序列化的字段. 如LinkedList实现了Serializable,其中有变量transient int size = 0; 在Serializable ...
- asp.net core 初探 二
今天用@宇内流云大大的jexus 体验一下生产环境的发布,运行. 生产环境: centos 7 jexus 5.8.1 独立版 包含了mono (mono安装真心痛苦……) 开发环境就是昨天的Ubun ...
- linux下修改主机名hostname方法(转载)
查看主机名: 在终端输入hostname 永久修改 第一步:#hostname oratest 第二步:修改/etc/sysconfig/network中的hostname 第三步:修改/etc/ho ...
- disabled和readonly
项目中,有一个input控件,input的值需要通过点击一个javascript链接,从弹出的对话框中所列出的项中选择.而不能从input框中直接输入. 刚开始将input的disabled属性设置为 ...
- httpurlconnection模拟post提交form表单(普通文本和上传文件) (
http://blog.sina.com.cn/s/blog_8417657f0101gvpc.html 用HttpUrlConnection模拟post表单进行文件上传平时很少使用,比较麻烦. 原理 ...