aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApQAAAENCAIAAAA+LGJ9AAAgAElEQVR4nO2dXWsc2Z2H81X8CUKom4UhlyGGhVxK2sp1wl4YB0KiSEugSGZzZRxCaFAU8NKwEBxQEGI7s7rYISoSlsnaChZBUSBZdtq7BL10t9TtkS3bQrUX9XZeq071i7qP5nl4mLFa3VWnqkv1q/85p7q/kAAAAIBXfGHeDQAAAIBmEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZxDeAAAAnkF4AwAAeAbhDQAA4BmENwAAgGcQ3gAAAJ5BeAMAAHgG4Q0AAOAZE4T3ZxfJb36ZtB4mH64k3/xS8s0vJR+uJK2HyW9+mXx2Mb0WAgAAgMRY4f32TfLRk+ThB8k3vmj24QfJR0+St2+m3VoAAAAYI7wvzpIffd0a26I/+npycTaDNgMAAHyuaRjeg+Pke191Su7U7301GRzPpuUAAACfU5qE9/t3rjW3Un+/f9ewVd12GERx8c+w3S1+FUdB/is7cSS9ppb6hQotcn6C4SFrw+Io0H/TdDOMjapehLp7m6144gYCAMA4NAnvj55IqfytLye/+knyp0/KJ/zpk+Tf/yX5p79X8/ujJ80aJaWeHC/mQHTEGjT14R1HQdhu62sqFlk2rEi04iH9H4YN1n5hzlVLzpvotsO0kfZNs2x4g/ButqMBAGAaOIf35Sj51pel5P700PLMYfLjb6oxfzlyb1MROmkMZCFmCgpbSEy98hYXqDw5C2Qxl6WHlF4E02pMmxa1hb0gba9jeMdRFtv2jRN+0zWsTWyNeedQeQMAzAXn8P7k11Iex1vZ458eZlH9rS9LDyrF929+6dykbjuUE6EsQWs7rzOqQ8W1VC/XJKRctuiyJYbwFtotPmQIyOyFQRbycg9DduFi6mmoi0y5v9z8Cltln9BtDgCw4DiHd+uhFMaXw+xxpZO8QAnv1kPXFcWRNZ/TrNBisqZqlMrWcjHKgpWVSispws9QXqvhbWtMFEsrKZYkPlr+W7yAURsnRXG6Onlz4kh7SM9vIbr1bK8cmnfdzQAAMCucw/v7X6ufm1ZU3n/6RP3Vd7/iuJ44EseWoygqEkFJy+qF1FTejcI7D0NDLpfXEnqZHUVRWKaZkrJSG5yuPvRLiaJoV9otXw1IFwHSpYe87IpGSF0QleFMKQ4AcBs4h3fFR7J844vJz76TnP5v9sxPD5N//gf1Cf8YNGqWFALZD4aqr7pEd1p4/og1vLNQE15RPjuO0rFpObzzPutyzDtsx+0wCMPa0W9LC439AFIYly21Fun5A+IznObuVzSs6e8BAGAaTCO8f/ad7DmXw+RXPzE/58HfNWqWKbxz5OBz7DNPSRfTKLzzaebG8Baemb9AWLi4DLmL3HT/W7PKO1R7y233mukPluPocdQ0aQlvAIBFYBrd5sXdYnrBXfj9rzmuR8kxJQ+TpLZq7bbDIIyi0B4ijSasddvtWGlBZXgLj+qtzF9Zt0W1lXeQF/PVSVk1t02+6jGPCoiXPK67jvAGAJg5405Ya6r7hLUkSUyVd2yMFjUey25hfVBZTL9mE9bsHff6mLc53vL1xVF2E5ia3Y4TxvJlFF0ItYWw7Qn6TDfjRZHSNipvAIBFwDm8//Pfqirv1IrwbnCrWJIIN2S13SvvvCIVEzvtXs5mZHWrRsErh36bVd5K1W2amzbObHnD5HBzfS9vl3OYuoQ3AAAsAk0+pMU27F1gS+6HHzT6kJYkDbwoKlJRiiD7h6xFkVL4uc7HmiS8tVZJM9zU8DOFt7acMNQSU9ho+xRy43bVfjpq3ofhEN7FflA+3kUb5QcAgFkywcejuod3049HFW5VzuLAnkJpbsufoJLIs7LqB2Kbh7c2wGu9+1wdCM8+LM72waemMXG5hcqrq+Lbvtv0OfT2DgAxmg3/lvKdfnMAgFug4ReTfLjSeLT7w5XmX+wtTstWJmrJ6BV4mN5dbShcKypet/AuG2B4rvr5LUXqSXd2idmnfoSb4S5w5YNiq3aZdbum1W2u9CHY0pt+dgCA2dP8K0G/+5UGyf3dr9zmV4K6FNnWF7pX3hJCvpaFvumDUrUlpMnaNj1/WvVro/CuXZS8JOUj2qQLEbrOAQBmSsPwTpKk9zfXLwb90deT3t9m0GYAAIDPNc3DO0mSt2+Szs+rPrbl4QdJ5+fNe8sBAACgnrHCO+Wzi+TjXyQ/fZD8YCnL7B8sJT99kHz8i+Szi+m1EAAAACQmCG8AAACYB4Q3AACAZxDeAAAAnkF4AwAAeAbhDQAA4BmENwAAgGcQ3gAAAJ5BeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZxDeAAAAfnBzc5P+g/AGAABYdG5ubt69e/f27dv0xy8MAAAAYLE5Pz9//fp1keVU3gAAAJ5BeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZxDeAAAAnkF4AwAAeAbhDQAA4BmENwAAgGcQ3gAAAJ5BeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZzQL76u37wfDy9PBq+P+CBEREV08HbwaDC+v3r6fQ3iPLq/mvv2IiIj++ury6lbD++rd+7lvMyIiou9evZtC/e0a3oPh5dw3GBER0XcHo8vbC+8TxrkREREn9mTw6vbCe+5bi4iIeDckvBERET2T8EZERPRMwhsREdEzCW9ERETPJLwRERE9k/BGRET0TMIbERHRMwlvREREzyS8ERERPZPwRkRE9EzCGxER0TMJb0RERM8kvBERET2T8EZERPRMwhsREdEzCW9ERETP9DO8O+vB8uZ+8ePB5lKw0joYHfdHO2uBiZXWQfq0gvUd6ceM1Y64zPWd/mFrOVuy7O5qsL4z1XcibXnZgBmsAufh7qr0tsreiUMX0cX9jZXsvN1ZD9Z2Tc85bC3b/1gqFmtc2sHmkry6nbV04XfkT2BRw7uzLp6YljYO1d+K4d1P3w/jqSo9IIoz4PpO8aYWP+bmb614QKhnwGm8/dIBur+xYt7Gu3KEYXnOMuvFoXvYWs7/GqUT5e6qeFWRPij/8SrXFsI1itg8YTnl8rXrnvSqxXzexwW2sy6e4vYPDnfWjO+j7Yqzyp01/eQprHdtN/1v+TdysLk09iFkO7arjnnjsa1ckQeVpwizCxze+cYY3hspvGtPRuoZMHsXq8oX4VRVstI6mDy8syUrV5f7GyvlNmZbl65id9WQ67jAmo4r47Hk0aErnGoPW8vFASkdnPsbK4FpyTtrgflvubOeP/+wtWxdvtwX1bgsw3lrPCBz1BAVrwVdnj+SDxjJoi5S/kzUx5unZqF4bFsetx3bFd0PrvoS3pvmN7UMOeNRUjwunAGLvpSK8qVce9Py5bC1bD0asoNmeX1V6xoSwzs/weWrEHpW0QOLA8xqcVB5cujKR6DU+SktytSFID7HeiRLqSz0goqPk9zeq1Xb2gFT/7eju7tqDvXctCaWunPylVpXV3Ual5ds+lOSHrcd21Jv2Xj6Et4ulbd8tipPcNIZsFXsvqq+x8P9g+JdnGJ4bxZnalMvYhAEwdLGrnZmn8I1Gt6ewhlBKEbFA8MY3gt96CpPM3cFGbJZKzUqzpVVlfc4Q6E4f516oSYrRrNVmDuTdtaCIFhpbaR92iutg9H+xvpS8XdROfRe97dg+0NQHrcd24et5ZWl4pJ9rOp/gcNbfnelWQnW8HYoX+r7Hu39PMubrWmPeeebkL+p5XmZMW+PTa/J1L9t9UTj16GbL7w+gHPl0iQt2XfKTkv1+kPYkGL/BKsdfS4n+mZ5JOyuBiutjnr1mWrs6C4xBW1azRur2LLQT0O6+OvrrKd/mFWD5Q22qP5x27Fdrn2cLodFDm+18hYyb4LKe0d6L9NB5XJfawfBzCes5e93dnTKfYakuH86JE3xd+vdoTs67htPT6bk1kqT9NRsGvOWTmRC52o2AprnN38FPrq7GhTjm0EQrLQODvcPRvsHmzXd3bLSrCBp4fkfSMVgpbKW7MkVE0VrdSy7R/Zj27CXml6eehTeo/K8M3l4C1N2xYsDsX9DJz2JTDu8D1vL662NlbR3QXjjs1VMdHmI87Fyko7Hh265dfKdaaZDVOtF12bd58ux3vkpnvjqhjZxAe2sB8FK6yCN7eyoy8vQldaBPiBt1XgaFLNQf4Lh3kthEtnScvU9IJXaZm/oj9vvapYdZ2DIr/A27pFGfY9C94XUQR1INUG5K4uzavbITG4VW9u1XFdWXKmhN9reXG8OXcPENKEPzFa+6CPc6iNO4V2e0TrrAZ3n3rqvDZcIJ/bKi9380tOQAjXzJdXZRXKvzwSzgG2zN2qP+eLYdpnsWecCh7fAOBPWpLdQLl/K/ZiPI64pu9J6BjxWV6qvy2mmg3BIre+Yz+/cJHZHdAvvRT505SUUf32V90GYrju15di6zbNmqH2JtrvRcJHNY1sa4ml4HWYealSXoETywe7OgfHzCfIb0qx1Uc1p3FZTmR63HduWv6kmLnB4T+0+b2FcRD0DClcG0tEgnwGzyYqGs2fTd918IKrnd6mXCX3XIbxtLs6hK5wEpbn0hiIpfYlluEessdRqXlm+aSAwfTl/Gl5qmrflqFSY7m+sVPX3SDVPPm1iLX+8fELN1Wp1eNs6Si0D8/qxXfG4q4sa3kaFclwfG67fZcppy3Cxo8+7UUui8oQ11d7s/XzMWzupoW+aPmvJEnJ34dBFrLS8XGtaaouYileb2fSI7D4x9U+geh6GT3oV3oiIiEh4IyIieifhjYiI6JmENyIiomcS3oiIiJ5JeCMiInom4Y2IiOiZhDciIqJnEt6eedofnV+Mzs8v+v1Br9c7nRK9Xq/fH5yfXwwuRqfz3kZERKyW8PbGk97w/GLY6/VGo9HV1dX19fXNzc3k71/Kzc3N9fX11dXVcDjs9XrnF8OT3nDum4yIiEYnP+0T3rfh2fmrweB8OBxeX19P/p5Vc319PRwOB4Pzs/NXc99wRETUnfxUT3jP3NPzUb/ff/369eTvljuvX7/u9/un5/PffEREVJz8JE94z9aTwRySO+Xy8rLf758M6D9HRFwsJz/D31J4279XUf3+mdWN7AsTJdJvUrJ+H2LV6opvspMxL8f2bXFje34xGg6Hk79P43FxcXF+QXgjIi6Wk5/eFyK8tS8zHh33Rztr6pfQ6V+WrgVz8YVxh63lLIZNeWz9JmZj0o8d56f9Ua/Xqx7n7rbDsN0V/5EkSRwV/7Q+34Xr6+ter3c6YPAbEXGBdDyHVzCT8C6/e7iS8jvVxcq7Y4nkA7UiX9o4lINZ+QrkLKGbhvcUK++BQ9ld5nQZy912GMXCM6p3o/BUA8PhcHAx/yMVERELHZO3glupvDvrRTBrvzVU3nLNnUVyXnar1bk9vI3PSRXDe3e1/grD3Oza74EfDM6vrq4q92uRzGG7222HUbsdVidzo8o7SZKrq6vz84u5H6mIiFjofg63MfvwPthcWt7c2VhZ2thtLev1rrnyXu2MjjvrwfLmvhrJ0o+m8C4WmK3LIbwNkW9avtbsuvDu9/uOfebKg3Jkd5VAl6hL8uvr616/P/cjFRERCx2Tt4IZh3c+xSwb83abcVaGd1Zq55W3wvJmy1p5l/E8m/B28uzsrPqTWOIoDNNgTv8ftrtZP7p11Ltp5X1zc3N2djb3IxUREQvdz+E2ZhnenfViBlk5Ye1gcymQSmdjJOvhnS/WsdtcCm8TE3abO1kb3kmSJHGU943HUdjuyiPc2gMmKge9CW9ExEXTMXkrmFV476yJASnPNj/YXNJCUbm5a7Vz2FoOTOGdZq2xqh6v8p6hdd3mYn94FEvVtrny7rbDKJamuNFtjojonY7JW8FMwntnLciHq02VYj7vLL3va2dtpXUgTFAvfru8uS/U7qn7GyvB2m7632OH8N7fWLd1iWcebC4tb+7nSz7uF2PtI9sMOHcdJqyplXdbqbOFbI6j/Ke8GHfpP2fCGiLioumYvBUsyn3exRPSFBdmm4tj0sW/s9u4q8O7tbESFMGc5fHuqlz0l0sox+OFNWZd9+Zm1882d/mEljgKorjbbldV3t12GARhKExkiyO37OZWMUTEhdMxeSuYd3h31oPllSWn0WU5dw82l5Y3W7YPaUlvCl/bzbrZpQAWcleaQLe7ml80CNcEtuLbKbxdPqQlK6OjOP2/HshFTKez0OOoeFbe624f8+ZDWhARF1DH5K1gzuFd3tKd3wtuZm3XOPHbWnmnFbPW6y62p5wZpy2t7ELvj44765PMWTu/GFYX3912mI53p4msTk/TPqyl+iNZFPh4VETEBbTBedwCX0wyW9MvJrm8vJz8rWoKX0yCiLiYTn6GJ7xn7un5qNfr3XJ+p8nNV4IiIi6gk5/kCe/b8HQwGgwGw+GwZvx7GlxfXw+Hw8FgcDqY/4YjIqLu5Kd6wvuWPOkNz4ejXq83HA7fvHlzfX1d//ktztzc3FxfX79582Y4HPZ6vfOL0em8txcREW1OftonvG/Vk8GrwcWr8/OLfr9/dnZ2OiXOzs76/f7g/GJw8eqEueWIiIst4Y2IiOiZhDciIqJnEt6IiIieSXgjIiJ6JuGNiIjomYQ3IiKiZxLeiIiInkl4IyIieibhjYiI6JmENyIiomcS3oiIiJ5JeCMiInrmgob3X096nb8cbf35j4r/8d9/EZ/z20//R3/t1t6j+8+7wiPdxx3lkdFx/8WDp9tb9a8dHfdHxy/37puerPvs+ZPi5Vt7j+491c2Xc7R9r7P3rFy+9sy9F8YlP3v+xLDYzt6zfvdxR2xk93Hn0YMj/d+mLTU0wGl7ERFxLi5oeP/w9x+bku/RvaeP0vz+60nv27/79b2nj5QX6pH5YG/bEHUvu1vPn9x7+uTxS/Xlenhv7alRqq2lWE55oWBalHTFUD7h5d79Isj7o+M0obM1dh93njx+WWa2eHGg5PHx0bYQupXhfVTuk+JxYYHmKxtERFwQFzS8bcl97+mjH//ht0VyK+G9tZfWoKNnz5/kdW2RQy8ePFXTNMvIIy3dxUjWqtL7z7tyMGf5mv+YrbEivKXs33tRhvfRdprZxvCWl2bOV+Fp9vAuOhLE6l/cCueeBkREnIv+hfe3f/frIrn1yjsNKvvLs0zSsjBTT9y87JbyrzK8rYvSEjdfZrPwfvHAeJGhtNmyBx4cmTonjtTrGOPOQUTEBdG/8FbUXmuO0uP+SMzOZ0fb97Vx5WPbmLe2WFN4FxcN2Spqw7vMY2t4Gy5E7j/f064AjNsrPq50m2c/pv3kWYe83G+PiIiL7J0M7/rK+7hv7hw2V97akPlja+VdxnNNeIs1bh7eRcEtVN662ULy7JcvHYzd4KbwVirvvAud0W5ERA+8k+FdX3mXGmd6CzktZKFLt7kU3tarh6Pte3t76au29h49eF4f3sIajeE9Ou7bx7DrKm9jXzo954iIC6t/4f3D33+8efD7KVTe/RcPlNFiKfwU05FmY1XduPLe2tveUiaIZfd6ZakphHfWyGxpR9v39rbrwlsfFBcUxu/L8H6+dz/bFVTeiIge6F94/+vhH477oyK/LUtQ629DR7QS1WUvuqF2T19eLKQ2vJ8937ZU/9YWHh9t33v65MGePJMub+TW3qP7e9v3n25vZasoimlb5S3GcF23uX43HaPgiIgL7IKG99af/2gL7xf/97f0OWl+S6+yz7LWYknJM7kKV4fDi99mt3FXh/fj/EY1+Y41/aNjlDU+Sq8PyllsTx8JM8nFe962t7Ihc7mCP9q+19l+0BFmj5frMmys2G0u/IrKGxFx0V3Q8D7uj/560vuvly8V9eeYXy59XMnoWK+8pXiWkru8AjDm7su9+529x7YPackzOOtml2r97uOOZUJZmsT5aLf2yS1poSyV0dI96Pky03njWe+6NCIgh7fc5UB4IyJ65+KG95imQah1+SrhLf6o1OvKJ47ZPnPNXHmn93qp2Sk3o4zkYpa4kJfCJ8akJb64qDKezctM1cby1dl28qWG9GTCGxHRA+9ceCMiIt51CW9ERETPJLwRERE9k/BGRET0TMIbERHRMwlvREREzyS8ERERPZPwRkRE9EzCGxER0TMJb0RERM8kvBERET2T8EZERPRMwhsREdEzCW9ERETPJLwRERE9k/BGRET0TMIbERHRM28vvE8Gr+a+tYiIiL57Mnh1e+E9GF7OfYMRERF9dzC6vL3wvnr3fu4bjIiI6LtX797fXngnSfLq9dXctxkREdFfP3v9dvLkbhbeSZJcvX0/GF6eDOa//YiIiL54MhgNhpdXb6dQc48T3gAAADB3CG8AAADPILwBAAA8g/AGAADwDMIbAADAMwhvAAAAzyC8AQAAPIPwBgAA8AzCGwAAwDMIbwAAAM8gvAEAADyD8AYAAPAMwhsAAMAzCG8AAADPILwBAAA8g/AGAADwDMIbAADAMwhvAAAAzyC8AQAAPIPwBgAA8AzCGwAAwDMIbwAAAM8gvAEAADyD8AYAAPAMwhsAAMAzFiq8u+0wCNvd8oE4Kn+OoyCIYunJ0nPVhcRREBifAAAA4DcNwjuOApko1h5KkQK3GjGOG4Z3tx2pC1AW0m2HhicAAAD4TbPwLpO12w7FWFSTtfph22+L3O22w8rIFxNdra61KwAAAIC7xWSVd/4rJcqll7iFt7xw4VFr5V3VMkvUAwAA3AUmrLyNJXIZseNW3qZVVi9LWihxDQAAd5kJK29T3CrhXU11eDs0Rs7z7GKC8AYAgDvMhLPNi7jNa2Q9vMervKtiv3iN2lvfbYdB1Ca/AQDgbuMa3uYwDaNo2uGdxbPSYW7uPNdnzRWdAeaZ6AAAAHeA5pW3lJh5rSxW4GOFd3FxUFbezcJbmqleTlmnAAcAgDtH8wlrpvAuc3JaY94Nu82Vm7vzyCa/AQDgDtIsvKNYugc7jcU0Z/OxZimNJxrzdq+8tQfFvDbcCg4AAOAz7uGdZnTYjsvKu6vn9RQnrLmGt/I5qXxICwAA3HGcwztNUENc17zoNipvCcIbAADuOA1mm0uZ6TaSPcsx77IVRDUAAHyumO23ijWfbZ4HsW2kOn9N+dr6SwnuGQMAgDvFQn0lKAAAANRDeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZxDeAAAAnkF4AwAAeAbhDQAA4BmENwAAgGcQ3gAAAJ5BeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGY3Cu9sOw3ZXfiyOgiCIYtvzA+0F06HbDitXm/6q/FfW1MrWmDZvvKY12ku1rYsjwy8sT5/9tsvLbfTbfCXFyuIofbL6f22RStvqtqay8fb2xZH2S4c1jd0YAICxaRLe+ok5faTqhG04H06BbjsMwtB2HhYiQDzxq/kUR4EDjRvvvpfks778k/Rs80WQcdfOftvr4jmI2u3QvByhFWk74yiI4rLJ3XaoLbmrLix9hb4ChyPN8bDRV1m5R4z7kjgHgJniGt7KGSqK5UCoKNyqK7VxKE7T5vN12dSw3U0zsa2dX00tmrzybraXnMM7yZKlIlWCopSd9rZXrVRNKqHVWuEfxflKjEtMf60uNrsAkfZNtx2mu0JucG14Vx42YmeA/T2yLZeoBoBbpkHlLfVpauVGGEWW079Dl3ED4iiQT+R6l6qxGdbObLdYatI+173UJLzVbbEVj9PfdnVlhp+F+j6Q+sWV/nG5HWkLjD37+ROlojz7ZbmNcie7EMnpVYC0h6oPG3FnaJcE5jGL6R41AADNcA9voYvTODSZWM50cRSE4XTGvrvtUCwxhU5OqYc5R2hjWfNVtGMaY95N9lJdfkaxsEFly7TMF/vJp7/t7uEdR2k71e0q9oX21KxXIG1eFIamWHbaS0l5ROjD2g6HjbJltnUK67LuSwpxALgFnMNbDiTh7Cbmpn7WymocU63o0B8blLmVJ0PZHLXCzRqmtTJbvbpIt2Hfhn0GY+6l7KXWyrv8nfxyuYKczba7hne3HUoXacXz4iiIIjG8y/euyPR0ZXlRXZF/+vbL4S1X2M6HjWG7qiC8AWDOuIa3FAFhu12eZg11VYl0nh7/nKaPUuqPCEEmV6Pyyd7WiGx8eLLzbqO9pFTmyg6SssRarOfXNVI8TXfbXcM7jqJYbIm6AeoRYgjLMty13vX6i6viebaoNj8ijqrH6dtnvbpx7Q0gvAFg1jS8z9tcU9rCu9ndSk0bYqqT5DIzb1Ss1/hyS4qGqj2n4w3Vu+2lccJb2s6iRyL93Yy2vcmEtbSd2ivygQSh8jYvIZ8Obp0KUHEJkh8RlYeZbVZb0U+hvIOG3QQAsAA0D+8gCIIocqi81R5Myx1P42E7C+e/dK8+06iRy7WxY1teRPVeGjO8hfYKg7mz2/YGE9a0dtoqb/uViXrQuIytlFccxUVIRR+D0ztbHd7CSIHWrzSNiRMAAHU0v1XMrfI2zAfKFzOV+sUhvONIu6KwXF+oD5tC0WntjfbSGOGtTL2Sy95b2vaqEtQa3nITunEslufKILTtyqnbDvV7GuQ5cNnrtMtGaaOth03RJPHec8NmS0mtjwoJr63cHgCA8Rm721ysKVOUucSWE1ZtODg3pDK8A2myli1oy57hcpwzb1vFa+u6UBvsJYeSMlFCQC6P1f05621vFN7Kdoi/LnsnguKmdFuHgtzZUIwWyEuXjghbfFeOttQOtCujC9LyhG1TC3OmsAHA1JkgvNvFOKFQslSVPeJSJq1GqsI7b0GRk/ZB1iRJiphxb5Bel5l/X7GXapG6aeMozIt30+vlqnC22+4Q3vkqte54840DiemKLu37bkdqgyfslZ6829zWX6JkurzzqbwBYMrwxSTNqctuAACAmUJ4AwAAeAbhDQAA4BmENwAAgOpgthYAAABSSURBVGcQ3gAAAJ5BeAMAAHgG4Q0AAOAZhDcAAIBnEN4AAACeQXgDAAB4BuENAADgGYQ3AACAZxDeAAAAnkF4AwAAeAbhDQAA4BmENwAAgGf8P/9zmyqvwPDCAAAAAElFTkSuQmCC" alt="" />

 /*
struct ListNode {
int val;
struct ListNode *next;
ListNode(int x) :
val(x), next(NULL) {
}
};*/
class Solution {
public:
ListNode* FindKthToTail(ListNode* pListHead, unsigned int k)
{
if (k <= ||!pListHead) return NULL;
ListNode* p1 = pListHead;
ListNode* p2 = pListHead;
//p1向前移动到第k个节点,即移动k-1次
for (int i = ;i < k;i++)
{
p1 = p1->next;
if (p1 == NULL)
return NULL;
}
//当p1移动到最后一个节点的时候,p2正好移动到倒数第k个节点
while (p1->next != NULL)
{
p1 = p1->next;
p2 = p2->next;
}
return p2;
}
};

2.2链表 链表中倒数第k个结点的更多相关文章

  1. 剑指offer四:链表中倒数第k个结点

    输入一个链表,输出该链表中倒数第K个结点 public class ListNode { int val; ListNode next = null; ListNode(int val) { this ...

  2. 剑指Offer 链表中倒数第k个结点

    题目描述 输入一个链表,输出该链表中倒数第k个结点.     思路: 法1:设置2个指针p,q.p先移动k次,然后pq同时后移,p到链表尾尾的时候,q指向倒数第k个节点. 注意://需要考虑k=0,以 ...

  3. 【编程题目】输入一个单向链表,输出该链表中倒数第 k 个结点

    第 13 题(链表):题目:输入一个单向链表,输出该链表中倒数第 k 个结点.链表的倒数第 0 个结点为链表的尾指针.链表结点定义如下: struct ListNode {int m_nKey;Lis ...

  4. 输出单向链表中倒数第k个结点

    描述 输入一个单向链表,输出该链表中倒数第k个结点,链表的倒数第0个结点为链表的尾指针. 链表结点定义如下: struct ListNode { int       m_nKey; ListNode* ...

  5. 找出链表中倒数第 k 个结点

    /* 题目:输入一个单向链表,输出该链表中倒数第 k 个结点.链表的倒数第 0 个结点为链表 的尾指针. 链表结点定义如下: struct node { int data; struct node * ...

  6. 链表中倒数第k个结点

    题目: 输入一个链表,输出该链表中倒数第k个结点. 思路: 因为是单向链表,如果使用最普通的遍历来解决的话会多出很多不必要的遍历.有一个比较好的解法,设置两个指针两个指针之间差k-1个位置,也就是当后 ...

  7. IT公司100题-13-求链表中倒数第k个结点

    问题描述: 输入一个单向链表,输出该链表中倒数第k个结点.链表倒数第0个节点为NULL. struct list_node { int data; list_node* next; }; 分析: 方法 ...

  8. 剑指Offer:面试题15——链表中倒数第k个结点(java实现)

    问题描述 输入一个链表,输出该链表中倒数第k个结点.(尾结点是倒数第一个) 结点定义如下: public class ListNode { int val; ListNode next = null; ...

  9. (剑指Offer)面试题15:链表中倒数第k个结点

    题目: 输入一个链表,输出该链表中倒数第k个结点. 例如:链表中有6个结点,从头到尾依次为1,2,3,4,5,6,则该链表的倒数第3个结点为4. 链表结点定义: struct ListNode{ in ...

  10. 【面试题015】链表中倒数第k个结点

    [面试题015]链表中倒数第k个结点    可以用两个指针,当第一个指针指向了第k个时候,第二个指针让他指向链表的第一个元素,然后这两个指针同时向后面移动, 当第一个指针移动到末尾的时候,第二个指针指 ...

随机推荐

  1. SilverLight.3-Validation:二、银光验证。TheLabel、TheDescriptionViewer和TheValidationSummary

    ylbtech-SilverLight.3-DataControls_BetterDataFroms:二.银光验证.TheLabel.TheDescriptionViewer和TheValidatio ...

  2. Jboss7类载入器

    1. 类载入器理论知识介绍 类载入器基于Jboss Module,代替了层次类载入环境,避免了当类存在多个版本号时,导致类载入错误. 类载入是基于模块的.必须显示的定义模块依赖.部署也是模块化的,假设 ...

  3. Maven引入Hadoop依赖报错:Missing artifact jdk.tools:jdk.tools:jar:1.6

    Maven引入Hadoop依赖报错:Missing artifact jdk.tools:jdk.tools:jar:1.6 原因是缺少tools.jar的依赖,tools.jar在jdk的安装目录中 ...

  4. mysql 远程登陆不上

    当使用 TCP/IP 连接 mysql 时, 出现 : Can't connect to MySQL server on 'xxx.xxx.xxx.xxx.'(111) 这个错误. 经过重复折腾: 确 ...

  5. Linux系统编程_1_文件夹读取(实现简单ls命令)

    闲来无事.随便写写,实现简单的ls命令: | 1 #include <stdio.h> | 2 #include <stdlib.h> | 3 #include <dir ...

  6. vuex Payload 荷载

    1.payload payload:有效载荷,即记录有效信息的部分. 通常在传输数据时,为了使数据传输更可靠,要把原始数据分批传输,并且在每一批数据的头和尾都加上一定的辅助信息,比如这一批数据量的大小 ...

  7. Vue 渲染优先级

    当 v-if 与 v-for 一起使用时,v-for 具有比 v-if 更高的优先级.

  8. .netMVC:Web页面向后台提交数据的方式和选择

    众所周知Web前端页面主要由HTML/CSS/Javascript组成,当要通过与用户的交互实现各种功能时,就需要向后台提交一些数据或者操作.在Web世界里各种实现眼花缭乱,但究其根本,不外乎三种方式 ...

  9. ios 视图的旋转及应用

    有时候,需要做出如下图所示的效果,这就需要用到视图的旋转了 1.首先将旋转的值由角度转换为弧度: #define degreesToRadinas(x) (M_PI * (x)/180.0) 注:M_ ...

  10. hdu 1203 I NEED A OFFER!(01背包)

    题意:"至少一份offer的最大概率".即求拿不到offer的最小概率 (得到offer的最大概率 = 1 - 反例的最小概率). 状态转移方程:dp[j]= Min(dp[j], ...