我是好文章的搬运工,原文来自博客园,博主一线码农,选自”6天通吃树结构“系列,地址:http://www.cnblogs.com/huangxincheng/archive/2012/11/25/2788268.html

一:概念

下面我们有and,as,at,cn,com这些关键词,那么如何构建trie树呢?

从上面的图中,我们或多或少的可以发现一些好玩的特性。

第一:根节点不包含字符,除根节点外的每一个子节点都包含一个字符。

第二:从根节点到某一节点,路径上经过的字符连接起来,就是该节点对应的字符串。

第三:每个单词的公共前缀作为一个字符节点保存。

二:使用范围

既然学Trie树,我们肯定要知道这玩意是用来干嘛的。

第一:词频统计。

可能有人要说了,词频统计简单啊,一个hash或者一个堆就可以打完收工,但问题来了,如果内存有限呢?还能这么

玩吗?所以这里我们就可以用trie树来压缩下空间,因为公共前缀都是用一个节点保存的。

第二: 前缀匹配

就拿上面的图来说吧,如果我想获取所有以"a"开头的字符串,从图中可以很明显的看到是:and,as,at,如果不用trie树,

你该怎么做呢?很显然朴素的做法时间复杂度为O(N2) ,那么用Trie树就不一样了,它可以做到h,h为你检索单词的长度,

可以说这是秒杀的效果。

举个例子:现有一个编号为1的字符串”and“,我们要插入到trie树中,采用动态规划的思想,将编号”1“计入到每个途径的节点中,

那么以后我们要找”a“,”an“,”and"为前缀的字符串的编号将会轻而易举。

三:实际操作

到现在为止,我想大家已经对trie树有了大概的掌握,下面我们看看如何来实现。

1:定义trie树节点

为了方便,我也采用纯英文字母,我们知道字母有26个,那么我们构建的trie树就是一个26叉树,每个节点包含26个子节点。

 1 #region Trie树节点
2 /// <summary>
3 /// Trie树节点
4 /// </summary>
5 public class TrieNode
6 {
7 /// <summary>
8 /// 26个字符,也就是26叉树
9 /// </summary>
10 public TrieNode[] childNodes;
11
12 /// <summary>
13 /// 词频统计
14 /// </summary>
15 public int freq;
16
17 /// <summary>
18 /// 记录该节点的字符
19 /// </summary>
20 public char nodeChar;
21
22 /// <summary>
23 /// 插入记录时的编码id
24 /// </summary>
25 public HashSet<int> hashSet = new HashSet<int>();
26
27 /// <summary>
28 /// 初始化
29 /// </summary>
30 public TrieNode()
31 {
32 childNodes = new TrieNode[26];
33 freq = 0;
34 }
35 }
36 #endregion

2: 添加操作

既然是26叉树,那么当前节点的后续子节点是放在当前节点的哪一叉中,也就是放在childNodes中哪一个位置,这里我们采用

int k = word[0] - 'a'来计算位置。

 1         /// <summary>
2 /// 插入操作
3 /// </summary>
4 /// <param name="root"></param>
5 /// <param name="s"></param>
6 public void AddTrieNode(ref TrieNode root, string word, int id)
7 {
8 if (word.Length == 0)
9 return;
10
11 //求字符地址,方便将该字符放入到26叉树中的哪一叉中
12 int k = word[0] - 'a';
13
14 //如果该叉树为空,则初始化
15 if (root.childNodes[k] == null)
16 {
17 root.childNodes[k] = new TrieNode();
18
19 //记录下字符
20 root.childNodes[k].nodeChar = word[0];
21 }
22
23 //该id途径的节点
24 root.childNodes[k].hashSet.Add(id);
25
26 var nextWord = word.Substring(1);
27
28 //说明是最后一个字符,统计该词出现的次数
29 if (nextWord.Length == 0)
30 root.childNodes[k].freq++;
31
32 AddTrieNode(ref root.childNodes[k], nextWord, id);
33 }
34 #endregion

3:删除操作

删除操作中,我们不仅要删除该节点的字符串编号,还要对词频减一操作。

  /// <summary>
/// 删除操作
/// </summary>
/// <param name="root"></param>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void DeleteTrieNode(ref TrieNode root, string word, int id)
{
if (word.Length == 0)
return; //求字符地址,方便将该字符放入到26叉树种的哪一颗树中
int k = word[0] - 'a'; //如果该叉树为空,则说明没有找到要删除的点
if (root.childNodes[k] == null)
return; var nextWord = word.Substring(1); //如果是最后一个单词,则减去词频
if (word.Length == 0 && root.childNodes[k].freq > 0)
root.childNodes[k].freq--; //删除途经节点
root.childNodes[k].hashSet.Remove(id); DeleteTrieNode(ref root.childNodes[k], nextWord, id);
}

4:测试

这里我从网上下载了一套的词汇表,共2279条词汇,现在我们要做的就是检索“go”开头的词汇,并统计go出现的频率。

 1        public static void Main()
2 {
3 Trie trie = new Trie();
4
5 var file = File.ReadAllLines(Environment.CurrentDirectory + "//1.txt");
6
7 foreach (var item in file)
8 {
9 var sp = item.Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
10
11 trie.AddTrieNode(sp.LastOrDefault().ToLower(), Convert.ToInt32(sp[0]));
12 }
13
14 Stopwatch watch = Stopwatch.StartNew();
15
16 //检索go开头的字符串
17 var hashSet = trie.SearchTrie("go");
18
19 foreach (var item in hashSet)
20 {
21 Console.WriteLine("当前字符串的编号ID为:{0}", item);
22 }
23
24 watch.Stop();
25
26 Console.WriteLine("耗费时间:{0}", watch.ElapsedMilliseconds);
27
28 Console.WriteLine("\n\ngo 出现的次数为:{0}\n\n", trie.WordCount("go"));
29 }

下面我们拿着ID到txt中去找一找,嘿嘿,是不是很有意思。

测试文件:1.txt

完整代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using System.Threading;
using System.IO; namespace ConsoleApplication2
{
public class Program
{
public static void Main()
{
Trie trie = new Trie(); var file = File.ReadAllLines(Environment.CurrentDirectory + "//1.txt"); foreach (var item in file)
{
var sp = item.Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries); trie.AddTrieNode(sp.LastOrDefault().ToLower(), Convert.ToInt32(sp[]));
} Stopwatch watch = Stopwatch.StartNew(); //检索go开头的字符串
var hashSet = trie.SearchTrie("go"); foreach (var item in hashSet)
{
Console.WriteLine("当前字符串的编号ID为:{0}", item);
} watch.Stop(); Console.WriteLine("耗费时间:{0}", watch.ElapsedMilliseconds); Console.WriteLine("\n\ngo 出现的次数为:{0}\n\n", trie.WordCount("go"));
}
} public class Trie
{
public TrieNode trieNode = new TrieNode(); #region Trie树节点
/// <summary>
/// Trie树节点
/// </summary>
public class TrieNode
{
/// <summary>
/// 26个字符,也就是26叉树
/// </summary>
public TrieNode[] childNodes; /// <summary>
/// 词频统计
/// </summary>
public int freq; /// <summary>
/// 记录该节点的字符
/// </summary>
public char nodeChar; /// <summary>
/// 插入记录时的编号id
/// </summary>
public HashSet<int> hashSet = new HashSet<int>(); /// <summary>
/// 初始化
/// </summary>
public TrieNode()
{
childNodes = new TrieNode[];
freq = ;
}
}
#endregion #region 插入操作
/// <summary>
/// 插入操作
/// </summary>
/// <param name="word"></param>
/// <param name="id"></param>
public void AddTrieNode(string word, int id)
{
AddTrieNode(ref trieNode, word, id);
} /// <summary>
/// 插入操作
/// </summary>
/// <param name="root"></param>
/// <param name="s"></param>
public void AddTrieNode(ref TrieNode root, string word, int id)
{
if (word.Length == )
return; //求字符地址,方便将该字符放入到26叉树中的哪一叉中
int k = word[] - 'a'; //如果该叉树为空,则初始化
if (root.childNodes[k] == null)
{
root.childNodes[k] = new TrieNode(); //记录下字符
root.childNodes[k].nodeChar = word[];
} //该id途径的节点
root.childNodes[k].hashSet.Add(id); var nextWord = word.Substring(); //说明是最后一个字符,统计该词出现的次数
if (nextWord.Length == )
root.childNodes[k].freq++; AddTrieNode(ref root.childNodes[k], nextWord, id);
}
#endregion #region 检索操作
/// <summary>
/// 检索单词的前缀,返回改前缀的Hash集合
/// </summary>
/// <param name="s"></param>
/// <returns></returns>
public HashSet<int> SearchTrie(string s)
{
HashSet<int> hashSet = new HashSet<int>(); return SearchTrie(ref trieNode, s, ref hashSet);
} /// <summary>
/// 检索单词的前缀,返回改前缀的Hash集合
/// </summary>
/// <param name="root"></param>
/// <param name="s"></param>
/// <returns></returns>
public HashSet<int> SearchTrie(ref TrieNode root, string word, ref HashSet<int> hashSet)
{
if (word.Length == )
return hashSet; int k = word[] - 'a'; var nextWord = word.Substring(); if (nextWord.Length == )
{
//采用动态规划的思想,word最后节点记录这途经的id
hashSet = root.childNodes[k].hashSet;
} SearchTrie(ref root.childNodes[k], nextWord, ref hashSet); return hashSet;
}
#endregion #region 统计指定单词出现的次数 /// <summary>
/// 统计指定单词出现的次数
/// </summary>
/// <param name="root"></param>
/// <param name="word"></param>
/// <returns></returns>
public int WordCount(string word)
{
int count = ; WordCount(ref trieNode, word, ref count); return count;
} /// <summary>
/// 统计指定单词出现的次数
/// </summary>
/// <param name="root"></param>
/// <param name="word"></param>
/// <param name="hashSet"></param>
/// <returns></returns>
public void WordCount(ref TrieNode root, string word, ref int count)
{
if (word.Length == )
return; int k = word[] - 'a'; var nextWord = word.Substring(); if (nextWord.Length == )
{
//采用动态规划的思想,word最后节点记录这途经的id
count = root.childNodes[k].freq;
} WordCount(ref root.childNodes[k], nextWord, ref count);
} #endregion #region 修改操作
/// <summary>
/// 修改操作
/// </summary>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void UpdateTrieNode(string newWord, string oldWord, int id)
{
UpdateTrieNode(ref trieNode, newWord, oldWord, id);
} /// <summary>
/// 修改操作
/// </summary>
/// <param name="root"></param>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void UpdateTrieNode(ref TrieNode root, string newWord, string oldWord, int id)
{
//先删除
DeleteTrieNode(oldWord, id); //再添加
AddTrieNode(newWord, id);
}
#endregion #region 删除操作
/// <summary>
/// 删除操作
/// </summary>
/// <param name="root"></param>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void DeleteTrieNode(string word, int id)
{
DeleteTrieNode(ref trieNode, word, id);
} /// <summary>
/// 删除操作
/// </summary>
/// <param name="root"></param>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void DeleteTrieNode(ref TrieNode root, string word, int id)
{
if (word.Length == )
return; //求字符地址,方便将该字符放入到26叉树种的哪一颗树中
int k = word[] - 'a'; //如果该叉树为空,则说明没有找到要删除的点
if (root.childNodes[k] == null)
return; var nextWord = word.Substring(); //如果是最后一个单词,则减去词频
if (word.Length == && root.childNodes[k].freq > )
root.childNodes[k].freq--; //删除途经节点
root.childNodes[k].hashSet.Remove(id); DeleteTrieNode(ref root.childNodes[k], nextWord, id);
}
#endregion
}
}

[算法]Trie树的更多相关文章

  1. 数据结构与算法—Trie树

    Trie,又经常叫前缀树,字典树等等.它有很多变种,如后缀树,Radix Tree/Trie,PATRICIA tree,以及bitwise版本的crit-bit tree.当然很多名字的意义其实有交 ...

  2. [算法] trie树实现

    小写字母的字典树 #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXN 1 ...

  3. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  4. [算法]从Trie树(字典树)谈到后缀树

    我是好文章的搬运工,原文来自博客园,博主July_,地址:http://www.cnblogs.com/v-July-v/archive/2011/10/22/2316412.html 从Trie树( ...

  5. 字符串模式匹配算法系列(三):Trie树及AC改进算法

    Trie树的python实现(leetcode 208) #!/usr/bin/env python #-*- coding: utf-8 -*- import sys import pdb relo ...

  6. 算法笔记--字典树(trie 树)&& ac自动机 && 可持久化trie

    字典树 简介:字典树,又称单词查找树,Trie树,是一种树形结构,是哈希树的变种. 优点:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较. 性质:根节点不包含字符,除根节点外每一个 ...

  7. 算法复习——trie树(poj2001)

    题目: 题目描述 给出 n 个单词(1<=n<=1000),求出每个单词的非公共前缀,如果没有,则输出自己. 输入格式 输入 N 个单词,每行一个,每个单词都是由 1-20 个小写字母构成 ...

  8. 笔试算法题(39):Trie树(Trie Tree or Prefix Tree)

    议题:TRIE树 (Trie Tree or Prefix Tree): 分析: 又称字典树或者前缀树,一种用于快速检索的多叉树结构:英文字母的Trie树为26叉树,数字的Trie树为10叉树:All ...

  9. 13-看图理解数据结构与算法系列(Trie树)

    Trie树 Trie树,是一种搜索树,也称字典树或单词查找树,此外也称前缀树,因为某节点的后代存在共同的前缀.它的key都为字符串,能做到高效查询和插入,时间复杂度为O(k),k为字符串长度,缺点是如 ...

随机推荐

  1. Android UI开源框架

    1.Side-Menu.Android 分类側滑菜单,Yalantis 出品. 项目地址:https://github.com/Yalantis/Side-Menu.Android 2.Context ...

  2. java变参

    java变参是通过数组来实现的 Object[] addAll(Object[] array1, Object... array2)和Object[] addAll(Object[] array1, ...

  3. Qt中的对象类型转换

    char * 与 const char *的转换 char *ch1="hello11"; const char *ch2="hello22"; ch2 = c ...

  4. 简单手机端头部设置 及css代码

    <html> <head> <title>今日报表</title> <meta http-equiv="Content-Type&quo ...

  5. Visual Studio Code v1.17

    Visual Studio Code v1.17发布 欢迎来到2017年9月发行的Visual Studio代码.在这个版本中有一些重要的更新,我们希望你会喜欢,一些关键的亮点包括: macOS To ...

  6. JQuery如何获取按键的unicode编码?

    $("selector").keyup(function(xxx){ var myEvent = xxx; var code = myEvent.keyCode; alert(co ...

  7. MySQL数据库的常见操作(七)

    MySQL数据库的常见操作 1.创建数据库 2.创建重名的数据库以及如何查看警告信息 3.设置数据库的编码方式(默认为utf8) 4.修改和查看数据库的编码方式 5.删除数据库 6.6.删除已经删除了 ...

  8. redis客户端连接,最大连接数查询与设置

    ##redis客户端连接数 redis通过监听一个TCP端口或socket的方式接收来自客户端的连接, 当与客户端建立连接后,redis内部会进行如下操作:()客户端socket会被设置为非阻塞模式, ...

  9. arcgis10.0 切片并发布服务及验证

    1.切片参考网址:https://jingyan.baidu.com/article/fa4125accc6bef28ac7092d7.html 2.通过下面代码验证  参考网址https://www ...

  10. 多媒体开发之---如何确定slice_header slice_type 的位置

    引用网友的问答:我找到0x000001 NAL的开头了,请问如何确定slice head的位置,继而得出slice_type呢?Nal unit后紧跟的就是slice head吗?标准里的循环让人看得 ...