题目描述

给定一个非负整数序列 {a},初始长度为 N。       
有M个操作,有以下两种操作类型:
1、A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1。
2、Q l r x:询问操作,你需要找到一个位置 p,满足 l<=p<=r,使得:
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。

输入

第一行包含两个整数 N  ,M,含义如问题描述所示。   
第二行包含 N个非负整数,表示初始的序列 A 。 
接下来 M行,每行描述一个操作,格式如题面所述。

输出

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。

样例输入

5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6

样例输出

4
5
6


题解

可持久化Trie树

由于x xor x=0,所以$a_p\oplus a_{p+1}\oplus \cdots\oplus a_{n-1}\oplus a_n\oplus x=(a_1\oplus a_2\oplus\cdots\oplus a_{p-2}\oplus a_{p-1})\oplus(a_1\oplus a_2\oplus\cdots\oplus a_{n-1}\oplus a_{n})\oplus x$

维护一个前缀异或和,则这里的sum[n] xor x是已知的,只要求出是这个值最大的sum[p-1]。

因为100000(2)>011111(2),所以可以把前缀和放到可持久化Trie树中,然后贪心求解。

这里需要注意的是l可能等于1,会使用到sum[0],而建立可持久化Trie树时就要用到root[-1],所以把整个数组向右平移一位。

#include <cstdio>
#include <algorithm>
#define N 600010
using namespace std;
int sum[N] , next[N * 20][2] , si[N * 20] , tot , root[N];
char str[5];
int insert(int x , int v)
{
int tmp , y , i;
bool t;
tmp = y = ++tot;
for(i = 1 << 24 ; i ; i >>= 1)
{
next[y][0] = next[x][0] , next[y][1] = next[x][1] , si[y] = si[x] + 1;
t = v & i , x = next[x][t] , next[y][t] = ++tot , y = next[y][t];
}
si[y] = si[x] + 1;
return tmp;
}
int query(int x , int y , int v)
{
int ret = 0 , i;
bool t;
for(i = 1 << 24 ; i ; i >>= 1)
{
t = v & i;
if(si[next[y][t ^ 1]] - si[next[x][t ^ 1]]) ret += i , x = next[x][t ^ 1] , y = next[y][t ^ 1];
else x = next[x][t] , y = next[y][t];
}
return ret;
}
int main()
{
int n , m , i , x , y , z;
scanf("%d%d" , &n , &m) , n ++ ;
for(i = 2 ; i <= n ; i ++ ) scanf("%d" , &x) , sum[i] = sum[i - 1] ^ x;
for(i = 1 ; i <= n ; i ++ ) root[i] = insert(root[i - 1] , sum[i]);
while(m -- )
{
scanf("%s%d" , str , &x);
if(str[0] == 'A') n ++ , sum[n] = sum[n - 1] ^ x , root[n] = insert(root[n - 1] , sum[n]);
else scanf("%d%d" , &y , &z) , printf("%d\n" , query(root[x - 1] , root[y] , sum[n] ^ z));
}
return 0;
}

【bzoj3261】最大异或和 可持久化Trie树的更多相关文章

  1. BZOJ3261: 最大异或和(可持久化trie树)

    题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...

  2. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  3. 【bzoj3689】异或之 可持久化Trie树+堆

    题目描述 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n ...

  4. BZOJ 3261 最大异或和 可持久化Trie树

    题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后 ...

  5. 洛谷P4592 [TJOI2018]异或 【可持久化trie树】

    题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...

  6. bzoj3261: 最大异或和 可持久化trie

    题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  7. [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  8. 【bzoj4103】[Thu Summer Camp 2015]异或运算 可持久化trie树

    Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i ...

  9. 【bzoj3261】【最大异或和】可持久化trie树+贪心

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...

随机推荐

  1. iOS动画——Layer Animations

    我们先来看一下今天我们要实现的效果,今天实现的效果用第一篇View Animations能实现相同效果. 动画由书籍<iOS Animations by tutorials>提供,我只是一 ...

  2. 剑指offer18 树的子结构

    另一种写法 class Solution { public: bool HasSubtree(TreeNode* pRoot1, TreeNode* pRoot2) { bool result = f ...

  3. Java中的ArrayList类和LinkedList

    集合的体系: ----------| Collection 单列集合的根接口----------------| List 如果实现了List接口的集合类,具备的特点: 有序,可重复.--------- ...

  4. HTML5语义

    语义通俗化为意义,也就是语义化的元素等于意义化的元素,看到这个元素的名称,就知道这个元素的意义,是拿来做什么用的,这就是HTML5的一个新特性,一个具有语义化的元素能够清楚的把元素的意义告诉浏览器和开 ...

  5. 配置Xcode的Device Orientation、AppIcon、LaunchImage

    以下图片指出的 TARGETS→General 面板的信息. 下面我们讲讲根据 APP 需求配置我们的Xcode: 1.设置 Device Orientation,指定 APP 支持设备的方向 ,我们 ...

  6. [BZOJ] 1127: [POI2008]KUP

    似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...

  7. jmeter接口测试 ——学习笔记

    JMETER常用操作 1.jmeter做http脚本 Http请求页面内容介绍 添加cookie 线程组-添加-配置元件--HTTP Cookie管理器 添加权限验证 不能使用普通用户修改学生金币,接 ...

  8. 我的Python分析成长之路7

    类 一.编程范式: 1.函数式编程   def 2.面向过程编程   (Procedural Programming) 基本设计思路就是程序一开始是要着手解决一个大的问题,然后把一个大问题分解成很多个 ...

  9. JAVA基础篇—多态

    class ColaEmployee父类 package com.cola; public class ColaEmployee { private String name; private int ...

  10. ubuntu gcc的下载链接,比较快的。

    http://mirrors.163.com/ubuntu-releases/ http://xhmikosr.1f0.de/tools/msys/