题目描述

有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红色线条的总长度即为所求.

输入

第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

输出

最后的周长,保留三位小数

样例输入

2
1 0 0
1 1 0

样例输出

10.472


题解

计算几何

考虑从下到上的每一个圆,它被其它的圆覆盖了多少。即考虑它被覆盖了多少弧度。

考虑两个圆,如果相离则不覆盖,内含判断一下包含关系。

如果它们相交,则两个半径和圆心连线形成了一个三角形,使用余弦定理$a^2+b^2-c^2=2ab\cos C$可以求出交点与圆心连线的夹角,再用$atan2$求出极角,极角加减夹角即为覆盖弧度。

得到所有覆盖弧度范围后排序,求区间覆盖即可。

注意一下覆盖弧度范围跨越0和2π的处理。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
#define squ(x) ((x) * (x))
using namespace std;
const double pi = acos(-1);
struct data
{
double pl , pr;
bool operator<(const data &a)const {return pl < a.pl;}
}a[N << 1];
double x[N] , y[N] , r[N];
int tot;
int main()
{
int n , i , j;
double afa , beta , d , last , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf%lf%lf" , &r[i] , &x[i] , &y[i]);
for(i = 1 ; i <= n ; i ++ )
{
ans += 2 * pi * r[i];
tot = 0;
for(j = i + 1 ; j <= n ; j ++ )
{
tot ++ , d = squ(x[i] - x[j]) + squ(y[i] - y[j]);
if(squ(r[i] + r[j]) <= d) a[tot].pl = a[tot].pr = 0;
else if(squ(r[i] - r[j]) >= d)
{
if(r[i] > r[j]) a[tot].pl = a[tot].pr = 0;
else a[tot].pl = 0 , a[tot].pr = 2 * pi;
}
else
{
afa = acos((r[i] * r[i] + d - r[j] * r[j]) / (2 * r[i] * sqrt(d)));
beta = atan2(y[j] - y[i] , x[j] - x[i]);
if(beta < 0) beta += 2 * pi;
a[tot].pl = beta - afa , a[tot].pr = beta + afa;
if(a[tot].pl < 0) tot ++ , a[tot].pl = a[tot - 1].pl + 2 * pi , a[tot - 1].pl = 0 , a[tot].pr = 2 * pi;
else if(a[tot].pr > 2 * pi) tot ++ , a[tot].pr = a[tot - 1].pr - 2 * pi , a[tot - 1].pr = 2 * pi , a[tot].pl = 0;
}
}
sort(a + 1 , a + tot + 1);
last = -1;
for(j = 1 ; j <= tot ; j ++ )
{
if(a[j].pr <= last) continue;
if(a[j].pl > last) ans -= (a[j].pr - a[j].pl) * r[i];
else ans -= (a[j].pr - last) * r[i];
last = a[j].pr;
}
}
printf("%.3lf\n" , ans);
return 0;
}

【bzoj1043】[HAOI2008]下落的圆盘 计算几何的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  3. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  4. bzoj1043 [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. Input 第一行为1个整数n,N<=1000 ...

  5. BZOJ 1043 HAOI2008 下落的圆盘 计算几何

    题目大意:n个圆盘依次下落.求终于能看到的轮廓线面积 円盘反对! 让我们一起团结起来! 赶走円盘! 咳咳.非常神的一道题 今天去看了题解和白书才搞出来-- 首先我们倒着做 对于每一个圆盘处理出在它之后 ...

  6. BZOJ 1043 [HAOI2008]下落的圆盘 ——计算几何

    倒着考虑,加入一个圆,判断和前面有没有完全覆盖的情况. 如果没有,和圆盘一一取交集,然后计算它们的并集,然后计算即可. #include <map> #include <cmath& ...

  7. JZYZOJ1502 [haoi2008]下落的圆盘 计算几何 贪心

    http://172.20.6.3/Problem_Show.asp?id=1502这种题用了快一天才写出来也是真的辣鸡.主要思路就是计算一下被挡住的弧度然后对弧度进行贪心.最开始比较困扰的是求弧度值 ...

  8. BZOJ-1043 [HAOI2008]下落的圆盘

    几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...

  9. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

随机推荐

  1. 51nod 1101 换零钱

    基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元.   ...

  2. 棋盘问题——POJ1321

    棋盘问题——深度优先搜索 题目描述: 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘 ...

  3. 【vue iview】项目 win10 放在C盘 经常npm install不成功,就是因为 权限问题,把代码目录放到D盘就没事了。

    [vue iview]项目 win10 放在C盘 经常npm install不成功,就是因为 权限问题,把代码目录放到D盘就没事了.

  4. jvm | 基于栈的解释器执行过程

    一段简单的算术代码: public class Demo { public static void main(String[] args) { int a = 1; int b = 2; int c ...

  5. 计算机应用第三次作业:自动开机自动关机 常用DOS命令 关于文件文件夹

    一.自动开机 台式机启动时按住DEL键 进入一个蓝色的界面,界面上是英文提示 这个界面是BIOS  ,是在机器的ROM中存储 二.自动关机 自动重启 方法一在120秒钟后自动关机 win+r (RUN ...

  6. iOS8之后,UITableViewRowAction实现滑动多个按钮

    #pragma mark - View lifeCycle - (void)viewDidLoad { [super viewDidLoad]; self.view.backgroundColor = ...

  7. vmware虚拟机安装Windows 7后虚拟机自动挂起

    vmware虚拟机安装windows7后在一段时间中没有操作,虚拟机会自动挂起,是因为windows7中的设置的自动睡眠,打开[控制面板]=>[电源选项]=>[选择关闭显示器时间]将下面两 ...

  8. (72)zabbix监控日志文件 MySQL日志为例

    一般情况下,日志最先反映出应用当前的问题,在海量日志里面找到我们异常记录,然后记录下来,并且根据情况报警,大家可以监控系统日志.nginx.Apache.业务日志. 这边我拿常见的MySQL日志做监控 ...

  9. 为PHPcms扩展json采集

    最近想用phpcms做个新闻类网站,做采集的时候发现没有json的选项,于是自己动手,增加了采集json选项. 由于有的网站并不是纯json传输,而是jsonp,因此我把json,jsonp数据都当做 ...

  10. 图解Disruptor框架(一):初识Ringbuffer

    图解Disruptor框架(一):初识Ringbuffer 概述 1. 什么是Disruptor?为什么是Disruptor? Disruptor是一个性能十分强悍的无锁高并发框架.在JUC并发包中, ...