【BZOJ 3697】采药人的路径
题目链接:
题解:
调了好久233。
大概想一想就是树分,然后考虑这样路径(u,v)的特征,以根节点(root)切开,u到root的阴阳差值,和v到root巧合互为相反数,然后考虑要有一个点可作为休息点,即u/v到root的路径中要有一点x与u/v到root的阴阳差值相同,然后维护一下就好。
注意的是阴阳差为0的特判……写挂了调好久,对拍也不好写,真是恶心。
代码:
#define Troy 11/23
#define inf 0x7fffffff #include <bits/stdc++.h> using namespace std; inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int N=1e5+; typedef long long ll; int n; struct edges{
int v,w;edges *last;
}edge[N<<],*head[N];int cnt; inline void push(int u,int v,int w){
edge[++cnt]=(edges){v,w,head[u]};head[u]=edge+cnt;
} int tot,root,heavy[N],size[N],top,num,T[N<<][],nT[N<<],pre[N<<]; ll ans,t[N<<][]; bool vis[N]; inline void dfs(int x,int fa){
size[x]=,heavy[x]=;
for(edges *i=head[x];i;i=i->last)if(!vis[i->v]&&i->v!=fa){
dfs(i->v,x);
heavy[x]=max(heavy[x],size[i->v]);
size[x]+=size[i->v];
}
heavy[x]=max(heavy[x],tot-size[x]);
if(top>heavy[x])
top=heavy[x],root=x;
} #define g(s) t[s+n]
#define G(s) T[s+n]
#define f(s) pre[s+n] inline void update(int x,int s,int fa){
bool a=f(s)>;
if(G(s)[a]!=num)
G(s)[a]=num,g(s)[a]=;
++g(s)[a];
++f(s);
for(edges *i=head[x];i;i=i->last)if(!vis[i->v]&&i->v!=fa)
update(i->v,s+(i->w?:-),x);
--f(s);
} inline void calc(int x,int s,int fa){
bool a=f(s)>;
++f(s);
if(G(s)[]==num)
ans+=g(s)[];
if(a&&G(s)[]==num){
ans+=g(s)[];
if(!s&&f(s)<=) ans-=g(s)[];
}
for(edges *i=head[x];i;i=i->last)if(!vis[i->v]&&i->v!=fa)
calc(i->v,s+(i->w?-:),x);
--f(s);
}
inline void solve(int x){
top=inf;
dfs(x,x);
vis[x=root]=true;
G()[]=++num;
g()[]=;
for(edges *i=head[x];i;i=i->last)if(!vis[i->v]){
calc(i->v,i->w?-:,x);
update(i->v,i->w?:-,x);
}
for(edges *i=head[x];i;i=i->last)if(!vis[i->v]){
tot=size[i->v];
solve(i->v);
}
} int main(){
n=read();
for(int i=,u,v,w;i^n;++i){
u=read(),v=read(),w=read();
push(u,v,w);
push(v,u,w);
}
tot=n;
f()=;
solve();
printf("%lld\n",ans);
}
【BZOJ 3697】采药人的路径的更多相关文章
- [BZOJ 3697] 采药人的路径
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3697 [算法] 首先 , 将黑色的边变成1 ,白色的边变成-1 那么 , 问题就转化 ...
- BZOJ 3697: 采药人的路径 [点分治] [我想上化学课]
传送门 题意: 路径有$-1,1$两种权值,求有多少路径满足权值和为$0$且有一个点将路径分成权值和为$0$的两段 第四节课本来想去上化学,然后快上课了这道题还没调出来.....可恶我想上化学 昨天两 ...
- bzoj 3697: 采药人的路径【点分治】
点分治,设当前处理的块的重心为rt,预处理出每个子树中f[v][0/1]表示组合出.没组合出一对值v的链数(从当前儿子出发的链),能组合出一对v值就是可以有一个休息点 然后对于rt,经过rt且合法的路 ...
- BZOJ 3697: 采药人的路径 点分治
好久不做点分治的题了,正好在联赛之前抓紧复习一下. 先把边权为 $0$ 的置为 $-1$.定义几个状态:$f[dis][0/1],g[dis][0/1]$ 其中 $f$ 代表在当前遍历的子树内的答案. ...
- 【BZOJ】3697: 采药人的路径
3697: 采药人的路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1718 Solved: 602[Submit][Status][Discu ...
- 【BZOJ】【3697】采药人的路径&【3127】【USACO2013 Open】Yin and Yang
点分治 Orz hzwer 倒是比较好想到点分治……然而在方案统计这里,我犯了两个错误…… 1.我比较傻逼的想的是:通过儿子来更新父亲,也就是统计以x为根的子树中xxxx的路径有多少条……这样转移. ...
- bzoj千题计划248:bzoj3697: 采药人的路径
http://www.lydsy.com/JudgeOnline/problem.php?id=3697 点分治 路径0改为路径-1 g[i][0/1] 和 f[i][0/1]分别表示当前子树 和 已 ...
- 【BZOJ-3697&3127】采药人的路径&YinandYang 点分治 + 乱搞
3697: 采药人的路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 246[Submit][Status][Discus ...
- BZOJ3697: 采药人的路径
传送门 不是那么裸的点分治. $f[i][0/1]$表示当前节点的一个子树中总权值和为$i$,且是否存在一个前缀使得其前缀和为$i$ $g[i][0/1]$表示当前节点的已遍历过的子树,其余一样. 对 ...
- BZOJ_3697_采药人的路径_点分治
BZOJ_3697_采药人的路径_点分治 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性 ...
随机推荐
- Jquery getJSON方法分析
准备工作 ·Customer类 public class Customer { public int Unid { get; set; } public string Customer ...
- 数据库scheme设计(9.4 小结)
通过这一章的内容,希望能够让大家明白一个道理,“数据库系统的性能不是优化出来的,更多的是设计出来的”.数据库Schema 的设计并不如很多人想象的那样只是一个简单的对象对应实现,而是一个系统工程.要想 ...
- Spring温故而知新 - bean的装配
Spring装配机制 Spring提供了三种主要的装配机制: 1:通过XML进行显示配置 2:通过Java代码显示配置 3:自动化装配 自动化装配 Spring中IOC容器分两个步骤来完成自动化装配: ...
- 新一代大数据处理引擎 Apache Flink
https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发 ...
- Aptana版本回滚的方法
最近Aptana对Django1.7的编译支持有点问题,开发环境必须使用Django1.6版本,今天看了一眼它的官网,版本已经到3.6.1,我的版本还是3.4.2,就checkupdate升级到3.6 ...
- Codeforces Round #479 (Div. 3) C. Less or Equal
题目地址:http://codeforces.com/contest/977/problem/C 题解:给一串数组,是否找到一个数x,找到k个数字<=x,找到输出x,不能输出-1.例如第二组,要 ...
- C#WebService 出现No 'Access-Control-Allow-Origin' header is present on the requested resource
C#WebService 出现No 'Access-Control-Allow-Origin' header is present on the requested resource 解决办法: 在c ...
- Asp.Net WebApi Swagger终极搭建
[PS:原文手打,转载说明出处,博客园] 关于为什么用Swagger 目前稍微有点规模的公司,已经从原先的瀑布流开发到了敏捷开发,实现前后端分离,为此后端工程师只关注写好Api即可,那程序员最讨厌的就 ...
- Webpack的配置与使用
一.什么是Webpack? WebPack可以看做是模块打包机.用于分析项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,TypeScript等),将 ...
- JS windows对象的top属性
原博文:http://www.jb51.net/article/44078.htm 本文为大家介绍下JS window对象的top.parent.opener含义,不了解的朋友可以参考下,希望对大 ...