bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队
Time Limit: 4 Sec Memory Limit: 64 MB
Submit: 5057 Solved: 2492
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
-1 10 -20
2 2 3 4
Sample Output
HINT
dp[i]=dp[j]+a*x*x+b*x+c
x=sum[i]-sum[j]
证明单调性
假设对于i点 k<j且j的决策比k优
dp[j]+a*(sum[i]-sum[j])*(sum[i]-sum[j])+b*(sum[i]-sum[j])+c>=dp[k]+a*(sum[i]-sum[k])*(sum[i]-sum[k])+b*(sum[i]-sum[k])+c
化简得 dp[j]+a*sum[j]*sum[j]-2*a*sum[i]*sum[j]-b*sum[j]>=dp[k]+a*sum[k]*sum[k]-2*a*sum[i]*sum[k]-b*sum[k]
要证明单调性 需证明下面的式子
dp[j]+a*(sum[t]-sum[j])*(sum[t]-sum[j])+b*(sum[t]-sum[j])+c>=dp[k]+a*(sum[t]-sum[k])*(sum[t]-sum[k])+b*(sum[t]-sum[k])+c
化简得dp[j]+a*sum[j]*sum[j]-2*a*sum[t]*sum[j]-b*sum[j]>=dp[k]+a*sum[k]*sum[k]-2*a*sum[t]*sum[k]-b*sum[k]
设t>i 显然sum[t]>=sum[i] 设sum[t]=sum[i]+v
代入sum[t]得 dp[j]+a*sum[j]*sum[j]-2*a*sum[i]*sum[j]-b*sum[j]+v*sum[j]>=dp[k]+a*sum[k]*sum[k]-2*a*sum[i]*sum[k]-b*sum[k]+v*sum[k]
因为j>k 所以sum[j]>=k 上式成立,决策单调性得证
证毕
可以写出斜率式
dp[j]+a*sum[j]^2-2*a*sum[i]*sum[j]-b*sum[j]>=dp[k]+a*sum[k]^2-2*a*sum[i]*sum[k]-b*sum[k] 且j>k
=> dp[j]-dp[k]+a*sum[j]^2-a*sum[k]^2+b*sum[k]-b*sum[j]>=sum[i]*2*a*(sum[j]-sum[k])
=> (dp[j]-dp[k]+a*sum[j]^2-a*sum[k]^2+b*sum[k]-b*sum[j])/(2*a*(sum[j]-sum[k]))>=sum[i]
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdlib>
#include<iostream>
#define ll long long
#define inf 2147483647
#define N 1000005
using namespace std;
ll dp[N],sum[N];
int a,b,c,q[N];
ll pw(ll x){return x*x;}ll S(int j,int k){return *a*(sum[j]-sum[k]);}
ll G(int j,int k){return dp[j]-dp[k]+a*pw(sum[j])-a*pw(sum[k])+b*sum[k]-b*sum[j];}
double slope(int j,int k){return (double)G(j,k)/S(j,k);} int main(){
int n;
scanf("%d",&n);
scanf("%d%d%d",&a,&b,&c);
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
sum[i]=sum[i-]+x;
}
int h=,t=;
for(int i=;i<=n;i++){
while(h+<t&&slope(q[h],q[h+])<=sum[i])h++;
int j=q[h],x=sum[i]-sum[j];
dp[i]=dp[j]+a*pw(x)+b*x+c;
while(h+<t&&slope(i,q[t-])<=slope(q[t-],q[t-]))t--;
q[t++]=i;
}
printf("%lld",dp[n]);
return ;
}
bzoj1911[Apio2010]特别行动队 斜率优化dp的更多相关文章
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- [Bzoj1911][Apio2010]特别行动队(斜率优化)
题目链接 斜率优化的经典模型,将序列分成若干段,每段有一个权值计算方法,求权值和最大/小 暴力的dp $O(n^{2})$ dp[i]为1-i的序列的最优解.sum[i]为前缀和,$D(i)=ax^{ ...
- 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP
想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
- APIO 2010 特别行动队 斜率优化DP
Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...
- BZOJ 1911 特别行动队(斜率优化DP)
应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...
随机推荐
- 视频聊天 Demo
ESFramework Demo -- 入门Demo,简单的即时通讯系统(附源码) 是基于ESFramework实现的一个简单的文字聊天demo,现在,我们将在这个demo的基础上,使用OMCS为其增 ...
- $.ajax 提交数据到后台.
//AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML -- (Extensible Markup Language 可扩展标记语言 ...
- Oracle银行存取钱系统
Oracle银行存取钱系统 /* 银行系统 要求: 1.创建一个用户信息表(userinfo).一个交易信息表(deal) 2.用户信息表字段:用户编号.用户名称.密码.余额 交易信息表字段:编号.交 ...
- Jenkins 安装、配置与项目新建及构建
1.Jenkins的安装与配置 1.1 java环境配置 Jenkins基于Java, Linux下安装java只要配置java环境变量即可. 首先,解压java到相应目录,我一般习惯把安装的软件放到 ...
- crontab的mysqldump备份任务未能完全正确执行的故障处理
crontab是每个运维一线人员必须掌握的技术,熟练运用crontab可以自动帮助我们执行重复性的工作,提高运维的工作效率.它就像一个闹钟,在特定的时间,准时响应并执行相应的任务.如果你的工作经常与L ...
- Spring源码阅读-spring启动
web.xml web.xml中的spring容器配置 <listener> <listener-class>org.springframework.web.context.C ...
- 单点登录实现机制:web-sso
参考链接,感谢作者:https://zm10.sm-tc.cn/?src=l4uLj8XQ0IiIiNGckZ2TkJiM0ZyQktCZlo2Mi5uNmp6S0I/QysrJyszPztGXi5K ...
- C#微信公众号开发——错误一
一.网站发布后,运行报如下错误
- MongoDB的安装和使用指南
什么是MongoDB MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系 ...
- POJ-3292 Semi-prime H-numbers---筛素数
题目链接: https://vjudge.net/problem/POJ-3292 题目大意: 定义一种数叫H-numbers,它是所有能除以四余一的数. 在H-numbers中分三种数: 1.H-p ...