[BZOJ]4805: 欧拉函数求和
解题思路类似莫比乌斯函数之和
题目大意:求[1,n]内的欧拉函数$\varphi$之和。($n<=2*10^{9}$)
思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i) $,题目所求即为$ M(n) $。
由于$ \sum_{d|n} \varphi (d)=n $ ,所以$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)=\frac{n(n+1)}{2} $
令$ i=kd $,则有$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)= \sum_{k=1}^{n} \sum_{d=1}^{\left \lfloor n/k \right \rfloor} \varphi (d) = \sum_{k=1}^{n} M(\left \lfloor n/k \right \rfloor) =\frac{n(n+1)}{2} $
那么$ M(n)=\frac{n(n+1)}{2}-\sum_{i=2}^{n} M(\left \lfloor n/i \right \rfloor) $
由于$ \left \lfloor n/i \right \rfloor $的取值只有$ O(\sqrt{n}) $种,预处理出前$ n^{\frac{2}{3}} $的$ M(n) $,然后记忆化搜索,可以证明总时间复杂度为$ O(n^{\frac{2}{3}}) $。
#include<cstdio>
#define ll long long
#define MN 1600000
#define MOD 2333333
struct edge{edge*nx;ll f;int x;}*h[MOD];
ll f[MN+];
int p[MN+],pn;
bool u[MN+];
ll cal(int n)
{
if(n<=MN)return f[n];
for(edge*i=h[n%MOD];i;i=i->nx)if(i->x==n)return i->f;
edge*np=new edge;*np=(edge){h[n%MOD],1LL*n*(n+)>>,n};h[n%MOD]=np;
for(int i=,ls;i<=n;i=ls+)ls=n/(n/i),np->f-=(ls-i+)*cal(n/i);
return np->f;
}
int main()
{
int n,i,j;
scanf("%d",&n);
for(f[]=,i=;i<=MN;++i)
{
if(!u[i])p[++pn]=i,f[i]=i-;
for(j=;i*p[j]<=MN&&(u[i*p[j]]=);++j)
if(i%p[j])f[i*p[j]]=f[i]*(p[j]-);
else{f[i*p[j]]=f[i]*p[j];break;}
f[i]+=f[i-];
}
printf("%lld",cal(n));
}
[BZOJ]4805: 欧拉函数求和的更多相关文章
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- 【刷题】BZOJ 4805 欧拉函数求和
Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...
- BZOJ4805: 欧拉函数求和(杜教筛)
4805: 欧拉函数求和 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 614 Solved: 342[Submit][Status][Discus ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- poj3090欧拉函数求和
E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB ...
- HDU2824-The Euler function-筛选法求欧拉函数+求和
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- BZOJ 4802 欧拉函数
4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...
- BZOJ 4802 欧拉函数(Pollard_Rho)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...
- [bzoj 2818]欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...
随机推荐
- 20162323周楠《Java程序设计与数据结构》第八周总结
20162323周楠 2016-2017-2 <程序设计与数据结构>第八周学习总结 教材学习内容总结 一个异常是一个对象,它定义了并不轻易出现的或是错误的情形 异常由程序或运行时环境抛出, ...
- 弹幕视频播放app案例分析
产品 哔哩哔哩动画 相对于其他视频播放软件来说,哔哩哔哩动画没有广告影响观看体验,而且内容更偏重于二次元,因此我更倾向于使用它. 第一部分 调研, 评测 #第一次上手体验 用起来还是比较方便,可以快速 ...
- 北亚关于HP EVA4400/6400/8400/P6000的数据恢复解决方案
[引言]本文档建立在针对HP EVA的大量测试性研究基础上,所有的细节几乎均为对EVA的破译型研究,目前全球范围内尚未发现类似资料,故可能表述方式和结论并不精确,仅为参考之用.我们公司为研究HP EV ...
- R语言基础1
----------------------------------R语言学习与科研应用,科研作图,数据统计挖掘分析,群:719954246-------------------------- 我们将 ...
- 裸辞两个月,海投一个月,从Android转战Web前端的求职之路
前言 看到这个标题的童鞋,可能会产生两种想法: 想法一:这篇文章是标题党 想法二:Android开发越来越不景气了吗?前端越来越火了吗? 我一向不喜欢标题党,标题中的内容是我的亲身经历.我是2016年 ...
- Web Api 利用 cors 实现跨域
一.安装 cors 二.修改 Web.config <appSettings> <add key="cors:allowedMethods" value=&quo ...
- 【问题解决】jhipster-registry-master空白页
问题概述: 刚从github拉下来的jhipster-registry-master直接运行,访问http://localhost:8761会发现会空白页,但是网页的title显示正常,本文目的是解决 ...
- jQuery兼容浏览器IE8方法
在维护公司网站的时候,发现在IE8下jquery会报对象不支持此属性或方法.缺少对象的错误: 在其他浏览器就可以正常运行,当前使用的jquery版本是3.1.1,查资料发现jquery从2.0开始不 ...
- vue组件详解(四)——使用slot分发内容
一.什么是slot 在使用组件时,我们常常要像这样组合它们: <app> <app-header></app-header> <app-footer>& ...
- Python基础学习篇章四
一. Python数据类型之字典 1. 键的排序:for循环 由于字典不是序列,因此没有可靠的从左至右的顺序.这就导致当建立一个字典,将它打印出来,它的键也许会以与我们输入时的不同的顺序出现.有时候我 ...