[BZOJ]4805: 欧拉函数求和
解题思路类似莫比乌斯函数之和
题目大意:求[1,n]内的欧拉函数$\varphi$之和。($n<=2*10^{9}$)
思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i) $,题目所求即为$ M(n) $。
由于$ \sum_{d|n} \varphi (d)=n $ ,所以$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)=\frac{n(n+1)}{2} $
令$ i=kd $,则有$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)= \sum_{k=1}^{n} \sum_{d=1}^{\left \lfloor n/k \right \rfloor} \varphi (d) = \sum_{k=1}^{n} M(\left \lfloor n/k \right \rfloor) =\frac{n(n+1)}{2} $
那么$ M(n)=\frac{n(n+1)}{2}-\sum_{i=2}^{n} M(\left \lfloor n/i \right \rfloor) $
由于$ \left \lfloor n/i \right \rfloor $的取值只有$ O(\sqrt{n}) $种,预处理出前$ n^{\frac{2}{3}} $的$ M(n) $,然后记忆化搜索,可以证明总时间复杂度为$ O(n^{\frac{2}{3}}) $。
#include<cstdio>
#define ll long long
#define MN 1600000
#define MOD 2333333
struct edge{edge*nx;ll f;int x;}*h[MOD];
ll f[MN+];
int p[MN+],pn;
bool u[MN+];
ll cal(int n)
{
if(n<=MN)return f[n];
for(edge*i=h[n%MOD];i;i=i->nx)if(i->x==n)return i->f;
edge*np=new edge;*np=(edge){h[n%MOD],1LL*n*(n+)>>,n};h[n%MOD]=np;
for(int i=,ls;i<=n;i=ls+)ls=n/(n/i),np->f-=(ls-i+)*cal(n/i);
return np->f;
}
int main()
{
int n,i,j;
scanf("%d",&n);
for(f[]=,i=;i<=MN;++i)
{
if(!u[i])p[++pn]=i,f[i]=i-;
for(j=;i*p[j]<=MN&&(u[i*p[j]]=);++j)
if(i%p[j])f[i*p[j]]=f[i]*(p[j]-);
else{f[i*p[j]]=f[i]*p[j];break;}
f[i]+=f[i-];
}
printf("%lld",cal(n));
}
[BZOJ]4805: 欧拉函数求和的更多相关文章
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- 【刷题】BZOJ 4805 欧拉函数求和
Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...
- BZOJ4805: 欧拉函数求和(杜教筛)
4805: 欧拉函数求和 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 614 Solved: 342[Submit][Status][Discus ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- poj3090欧拉函数求和
E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB ...
- HDU2824-The Euler function-筛选法求欧拉函数+求和
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- BZOJ 4802 欧拉函数
4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...
- BZOJ 4802 欧拉函数(Pollard_Rho)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...
- [bzoj 2818]欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...
随机推荐
- Numpy - 多维数组(上)
一.实验说明 numpy 包为 Python 提供了高性能的向量,矩阵以及高阶数据结构.由于它们是由 C 和 Fortran 实现的,所以在操作向量与矩阵时性能非常优越. 1. 环境登录 无需密码自动 ...
- python使用tesseract-ocr完成验证码识别(安装部分)
一.tesseract-ocr安装 Ubuntu版本: 1.tesseract-ocr安装 sudo apt-get install tesseract-ocr 2.pytesseract安装 sud ...
- Mego开发文档 - 处理并发冲突
处理并发冲突 数据库并发是指多个进程或用户同时访问或更改数据库中的相同数据的情况.并发控制是指用于确保存在并发更改时数据一致性的特定机制. Mego实现了乐观并发控制,这意味着它可以让多个进程或用户独 ...
- 原生JavaScript实现页面回到顶部的功能
/*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...
- C#微信公众号——消息处理
当普通微信用户向公众账号发消息时,微信服务器将POST消息的XML数据包到开发者填写的URL. 一.接收POST请求,处理XML信息 public void ProcessRequest(HttpC ...
- python爬虫动态html selenium.webdriver
python爬虫:利用selenium.webdriver获取渲染之后的页面代码! 1 首先要下载浏览器驱动: 常用的是chromedriver 和phantomjs chromedirver下载地址 ...
- oracle sequence 异常
对于数据量较大的序列进行分析 ,出现风险有两种情况1. 序列号随着业务增加变大时,DB的字段空间不足.>>产生后果:插入报错.>>解决方案:给存储序列号的字段进行扩容,且字段长 ...
- windows系统设置虚拟机开机自启并运行虚拟系统
简述 很多用windows系统电脑开发的童鞋,会在自己电脑上装一个虚拟机,然后在装一个linux系统当作服务器来使用. 但每次电脑开机都要去重启一下虚拟机电源,实在是不划算.下面博主教大家在windo ...
- 算法 排序lowB三人组 冒泡排序 选择排序 插入排序
参考博客:基于python的七种经典排序算法 [经典排序算法][集锦] 经典排序算法及python实现 首先明确,算法的实质 是 列表排序.具体就是操作的列表,将无序列表变成有序列表! 一 ...
- python中文编码坑
打印list的时候unicode对象不会自动转为中文!