NOIP提高组2010 乌龟棋
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。
乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。
游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。
很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗
Input
- 9 5
- 6 10 14 2 8 8 18 5 17
- 1 3 1 2 1
Output
- 73
提示
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。
F[ 0 ][ 0 ][ 0 ][ 0
] = Q[1] 初始位置
用四位数组F[ I ][ J ][ K ][ L ]来分别表示1 , 2 , 3 , 4的张数,Q来表示使用 i , j , k, l 张时可以得到的分数,
--> F[ I ][ J ][ K ][ L ] = max{a > 0, F[ I-1 ][ J ][ K ][ L ] + Q[
a*1+b*2+c*3+d*4 + 1] // +1 是因为从第一个格子开始
b > 0,F[ I ][ J-1 ][ K ][ L ]+
Q[
a*1+b*2+c*3+d*4 + 1 ]
c > 0 ,
F[ I ][ J ][ K-1 ][ L ] + Q[
a*1+b*2+c*3+d*4 + 1]
d > 0,F[
I ][ J ][ K ][ L-1 ]+ Q[
a*1+b*2+c*3+d*4 + 1]
下面代码来之
jiangzh7
- #include <iostream>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
- #include <map>
- #include <queue>
- #include <algorithm>
- using namespace std;
- int n,k,m;
- const int maxn = 0x3f3f3f3f;
- int num[5];
- int a[400];
- int f[100][100][100][100];
- int main()
- {
- while(~scanf("%d%d",&n,&m))
- {
- memset(f,0,sizeof(f));
- memset(a,0,sizeof(a));
- for(int i = 1; i <= n; i++)
- scanf("%d",&a[i]);
- for(int i = 1; i <= m; i++)
- {
- int a;
- scanf("%d",&a);
- num[a] ++ ;
- }
- f[0][0][0][0] = a[1];
- for(int i = 0; i <= num[1]; i++)
- for(int j = 0; j <= num[2]; j++)
- for(int k = 0; k <= num[3]; k++)
- for(int l = 0; l <= num[4]; l++)
- {
- if(i >= 1)
- f[i][j][k][l] = max(f[i][j][k][l], f[i-1][j][k][l] + a[1 + i + 2*j + 3*k + 4*l]);
- if(j >= 1)
- f[i][j][k][l] = max(f[i][j][k][l], f[i][j-1][k][l] + a[1 + i + 2*j + 3*k + 4*l]);
- if(k >= 1)
- f[i][j][k][l] = max(f[i][j][k][l], f[i][j][k-1][l] + a[1 + i + 2*j + 3*k + 4*l]);
- if(l >= 1)
- f[i][j][k][l] = max(f[i][j][k][l], f[i][j][k][l-1] + a[1 + i + 2*j + 3*k + 4*l]);
- }
- printf("%d\n",f[num[1]][num[2]][num[3]][num[4]]);
- }
- return 0;
- }
NOIP提高组2010 乌龟棋的更多相关文章
- 题解 【luogu P1541 NOIp提高组2010 乌龟棋】
题目链接 题解 题意: 有一些格子,每个格子有一定分数. 给你四种卡片,每次可以使用卡片来前进1或2或3或4个格子并拾取格子上的分数 每张卡片有数量限制.求最大分数. 分析 设\(dp[i]\)为第前 ...
- noip 提高组 2010
T1:机器翻译 题目背景 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章. 题目描述 这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换.对于每个英 ...
- noip提高组 2010 关押罪犯 (洛谷1525)
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...
- NOIP提高组2010 关押罪犯
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示 ...
- 题解【luoguP1525 NOIp提高组2010 关押罪犯】
题目链接 题解 算法: 一个经典的并查集 但是需要用一点贪心的思想 做法: 先将给的冲突们按冲突值从大到小进行排序(这很显然) 然后一个一个的遍历它们 如果发现其中的一个冲突里的两个人在同一个集合里, ...
- NOIP提高组2004 合并果子题解
NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...
- 计蒜客 NOIP 提高组模拟竞赛第一试 补记
计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...
- 1043 方格取数 2000 noip 提高组
1043 方格取数 2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...
- [NOIP提高组2018]货币系统
[TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...
随机推荐
- 2017-2018-1 1623 bug终结者 冲刺006
bug终结者 冲刺006 by 20162328 蔡文琛 今日任务:音频素材添加 又是新的一天,小组项目有了很大的起色,已经可以在手机上试玩了. 添加背景音乐能使我们的游戏锦上添花. 音频资源需求 需 ...
- iOS开发-添加圆角效果高效实现
圆角(RounderCorner)是一种很常见的视图效果,相比于直角,它更加柔和优美,易于接受.但很多人并不清楚如何设置圆角的正确方式和原理.设置圆角会带来一定的性能损耗,如何提高性能是另一个需要重点 ...
- js日常积累
1.数组转字符串 str.join(',') 2.字符串转数组 arr.split(',') 3.数组排序 function sorb(a,b){return a-b;}; arr.sort(sorb ...
- JQuery 动态加载iframe.
html: <iframe id="ifm" style="width:inherit;height:inherit" runat="serve ...
- 码农、黑客和2B程序员之间的区别
码农: 黑客: 2B程序员: 求2的32次方: 码农: System.out.println(Math.pow(2, 32)); 黑客: System.out.println(1L<<32 ...
- python的模块和包
==模块== python语言的组织结构层次: 包->模块->代码文件->类->函数->代码块 什么是模块呢 可以把模块理解为一个代码文件的封装,这是比类更高一级的封装层 ...
- c#+wpf项目性能优化之OutOfMemoryException解密
近期,使用c#+wpf开发的软件准备正式投入使用了,使用前进行了大量的测试,测试后发现了一些问题,其中最让人头疼的就是软件的性能问题(稳定性). 这里的稳定性具体表现在机器的cpu占有率和内存使用情况 ...
- 2.sublime设置本地远程代码同步
1.打开编辑器输入框(Ctrl+Shift+P),并执行 2.回车后输入sftp 3.回车个后,右键项目 4.修改配置信息,保存
- CTF中常见密码题解密网站总结
0x00.综合 网站中包含大多编码的解码. http://web2hack.org/xssee/ https://www.sojson.com/ http://web.chacuo.net/ 0x01 ...
- ubuntu16.04下安装chrome
1.在终端中,输入以下命令: sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.l ...