题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2752
题解:

期望,线段树。
把每个路段看成一个点,那么对于l~R的操作,就可以转化为对l~r(r=R-1)的路段的操作。
对于每个询问,我们只需要依次考虑每个路段出现在多少个区间里面。
令cnt[i]表示i号路段在cnt[i]个区间包含。
即答案为$$\frac{\sum_{i=l}^{r}v[i]*cnt[i]}{(r-l+1)*(r-l+2)/2(区间总数)}$$
那么就需要在线维护一些,使得能够快速求出上面的值。
考虑每个路段的贡献:
i号路段被(i-l+1)*(r-i+1)个区间包含,
所以贡献为:(i-l+1)*(r-i+1)*v[i],把其展开:
=(l+r)*i*v[i]-l*r*v[i]-l*v[i]+r*v[i]-i*i*v[i]+v[i]。
所以,我们只需要用线段树维护每个区间的路段的v[i]的和,i*v[i]的和,i*i*v[i]的和;

代码:

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
long long sumi[MAXN],sumi2[MAXN];
struct SGT{
int size,root;
int ls[MAXN*2],rs[MAXN*2],lazy[MAXN*2];
long long sumval[MAXN*2],sumival[MAXN*2],sumi2val[MAXN*2];
void Pushup(int u){
sumval[u]=sumval[ls[u]]+sumval[rs[u]];
sumival[u]=sumival[ls[u]]+sumival[rs[u]];
sumi2val[u]=sumi2val[ls[u]]+sumi2val[rs[u]];
}
void Add(int &u,int l,int r,int v){
if(!u) u=++size;
sumval[u]+=1ll*(r-l+1)*v;
sumival[u]+=(sumi[r]-sumi[l-1])*v;
sumi2val[u]+=(sumi2[r]-sumi2[l-1])*v;
lazy[u]+=v;
}
void Pushdown(int u,int l,int mid,int r){
Add(ls[u],l,mid,lazy[u]);
Add(rs[u],mid+1,r,lazy[u]);
lazy[u]=0;
}
void Modify(int &u,int l,int r,int al,int ar,int v){
if(!u) u=++size;
if(al<=l&&r<=ar) return Add(u,l,r,v);
int mid=(l+r)>>1;
if(lazy[u]) Pushdown(u,l,mid,r);
if(al<=mid) Modify(ls[u],l,mid,al,ar,v);
if(mid<ar) Modify(rs[u],mid+1,r,al,ar,v);
Pushup(u);
}
long long Contribution(int u,int al,int ar){
return sumival[u]*(al+ar)-sumval[u]*al*ar-sumval[u]*al+sumval[u]*ar-sumi2val[u]+sumval[u];
// return sumival[u]*(al+ar)-sumval[u]*al*ar+sumval[u]*ar-sumival[u]-sumi2val[u];
}
long long Query(int u,int l,int r,int al,int ar){
if(!u) return 0;
if(al<=l&&r<=ar) return Contribution(u,al,ar);
int mid=(l+r)>>1; long long ret=0;
if(lazy[u]) Pushdown(u,l,mid,r);
if(al<=mid) ret+=Query(ls[u],l,mid,al,ar);
if(mid<ar) ret+=Query(rs[u],mid+1,r,al,ar);
return ret;
}
}DT;
int N,M;
long long gcd(long long a,long long b){
while(b^=a^=b^=a%=b);
return a;
}
int main(){
char ch; int l,r,v;
scanf("%d%d",&N,&M);
for(int i=1;i<=N;i++)
sumi[i]=sumi[i-1]+i,sumi2[i]=sumi2[i-1]+1ll*i*i;
for(int i=1;i<=M;i++){
scanf(" %c %d %d",&ch,&l,&r); r--;
if(ch=='C') scanf("%d",&v),DT.Modify(DT.root,1,N,l,r,v);
else {
long long a=DT.Query(DT.root,1,N,l,r);
long long b=1ll*(r-l+1)*(r-l+2)/2;
long long g=gcd(a,b);
a/=g; b/=g; printf("%lld/%lld\n",a,b);
}
}
return 0;
}

  

●BZOJ 2752 [HAOI2012]高速公路(road)的更多相关文章

  1. BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )

    对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...

  2. BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit] ...

  3. bzoj 2752: [HAOI2012]高速公路(road)

    Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收 ...

  4. BZOJ 2752 [HAOI2012]高速公路(road):线段树【维护区间内子串和】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2752 题意: 有一个初始全为0的,长度为n的序列a. 有两种操作: (1)C l r v: ...

  5. BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][ ...

  6. 【线段树】BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit] ...

  7. BZOJ 2752:[HAOI2012]高速公路(road)(线段树)

    [HAOI2012]高速公路(road) Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y ...

  8. BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Descripti ...

  9. 【bzoj2752】[HAOI2012]高速公路(road) 线段树

    题目描述 Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西 ...

随机推荐

  1. C++之异常捕获和处理

    一.简介   在C++语言中,异常处理包括:throw表达式,try语句块,一套异常类.其中,异常类用于在throw表达式和相关的catch子句之间传递异常的具体信息.exception头文件定义了最 ...

  2. 每日冲刺报告——Day5(Java-Team)

    第五天报告(11.6  周一) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://git ...

  3. Beta预备

    团队名称:稳住!我们能赢 Beta预备: 讨论组长是否重选的议题和结论 项目组长可以说是一个团队的灵魂和核心.一个好的领导者可以激发团队成员的工作热情,提高开发效率,保质保量的完成工作.虽然在Alph ...

  4. verilog学习笔记(3)_task/case小例子及其tb

    module ex_case `timescale lns/1ns module ex_case( input wire rst_n, input wire sclk, output reg [7:0 ...

  5. maven创建web工程

    使用eclipse插件创建一个web project 首先创建一个Maven的Project如下图 我们勾选上Create a simple project (不使用骨架) 这里的Packing 选择 ...

  6. OpenShift实战(二):OpenShift节点扩容

    1.新增节点信息 增加节点如下,请将xxx改为自己的域名 node6.xxx.net Node 192.168.8.90 8G 20G/60G 4C node7.xxx.net Node 192.16 ...

  7. (转载) Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)

    1 . 查看当天日期 select current_date(); 2. 查看当天时间 select current_time(); 3.查看当天时间日期 select current_timesta ...

  8. WPF 自定义TextBox带水印控件,可设置圆角

    一.简单设置水印TextBox控件,废话不多说看代码: <TextBox TextWrapping="Wrap" Margin="10" Height=& ...

  9. [扩展推荐] —— Laravel Log 增强

    Laravel Log Enhancer 是 Laravel 5.6  的一个扩展包,可以在 Laravel 日志中添加额外的数据. 得益于 Laravel 5.6 中日志的更新,这个包利用这些特性扩 ...

  10. Let's Encrypt,站点加密之旅

    HTTPS(全称:Hyper Text Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HTTP的安全版.即HTTP下加入 ...