API - 可视化

TensorFlow 提供了可视化模型和激活输出等的工具 TensorBoard
在这里,我们进一步提供一些可视化模型参数和数据的函数。

read_image(image[, path]) Read one image.
read_images(img_list[, path, n_threads, ...]) Returns all images in list by given path and name of each image file.
save_image(image[, image_path]) Save one image.
save_images(images, size[, image_path]) Save mutiple images into one single image.
draw_boxes_and_labels_to_image(image[, ...]) Draw bboxes and class labels on image.
W([W, second, saveable, shape, name, fig_idx]) Visualize every columns of the weight matrix to a group of Greyscale img.
CNN2d([CNN, second, saveable, name, fig_idx]) Display a group of RGB or Greyscale CNN masks.
frame([I, second, saveable, name, cmap, fig_idx]) Display a frame(image).
images2d([images, second, saveable, name, ...]) Display a group of RGB or Greyscale images.
tsne_embedding(embeddings, reverse_dictionary) Visualize the embeddings by using t-SNE.

读取与保存图片

读取单个图片

tensorlayer.visualize.read_image(image, path='')[源代码]

Read one image.

Parameters:

images : string, file name.

path : string, path.

读取多个图片

tensorlayer.visualize.read_images(img_list, path='', n_threads=10, printable=True)[源代码]

Returns all images in list by given path and name of each image file.

Parameters:

img_list : list of string, the image file names.

path : string, image folder path.

n_threads : int, number of thread to read image.

printable : bool, print infomation when reading images, default is True.

保存单个图片

tensorlayer.visualize.save_image(image, image_path='')[源代码]

Save one image.

Parameters:

images : numpy array [w, h, c]

image_path : string.

保存多个图片

tensorlayer.visualize.save_images(images, size, image_path='')[源代码]

Save mutiple images into one single image.

Parameters:

images : numpy array [batch, w, h, c]

size : list of two int, row and column number.

number of images should be equal or less than size[0] * size[1]

image_path : string.

Examples

>>> images = np.random.rand(64, 100, 100, 3)
>>> tl.visualize.save_images(images, [8, 8], 'temp.png')

保存目标检测图片

tensorlayer.visualize.draw_boxes_and_labels_to_image(image, classes=[], coords=[], scores=[], classes_list=[], is_center=True, is_rescale=True, save_name=None)[源代码]

Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of tl.prepro.

Parameters:

image : RGB image in numpy.array, [height, width, channel].

classes : a list of class ID (int).

coords : a list of list for coordinates.

  • Should be [x, y, x2, y2] (up-left and botton-right format)
  • If [x_center, y_center, w, h] (set is_center to True).

scores : a list of score (float). (Optional)

classes_list : list of string, for converting ID to string on image.

is_center : boolean, defalt is True.

If coords is [x_center, y_center, w, h], set it to True for converting [x_center, y_center, w, h] to [x, y, x2, y2] (up-left and botton-right).
If coords is [x1, x2, y1, y2], set it to False.

is_rescale : boolean, defalt is True.

If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally.
If False, feed the coordinates with pixel unit format.

save_name : None or string

The name of image file (i.e. image.png), if None, not to save image.

References

可视化模型参数

可视化Weight Matrix

tensorlayer.visualize.W(W=None, second=10, saveable=True, shape=[28, 28], name='mnist', fig_idx=2396512)[源代码]

Visualize every columns of the weight matrix to a group of Greyscale img.

Parameters:

W : numpy.array

The weight matrix

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

shape : a list with 2 int

The shape of feature image, MNIST is [28, 80].

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)

可视化CNN 2d filter

tensorlayer.visualize.CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362)[源代码]

Display a group of RGB or Greyscale CNN masks.

Parameters:

CNN : numpy.array

The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)

可视化图像

matplotlib显示单图

tensorlayer.visualize.frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836)[源代码]

Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

Parameters:

I : numpy.array

The image

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

cmap : None or string

'gray' for greyscale, None for default, etc.

fig_idx : int

matplotlib figure index.

Examples

>>> env = gym.make("Pong-v0")
>>> observation = env.reset()
>>> tl.visualize.frame(observation)

matplotlib显示多图

tensorlayer.visualize.images2d(images=None, second=10, saveable=True, name='images', dtype=None, fig_idx=3119362)[源代码]

Display a group of RGB or Greyscale images.

Parameters:

images : numpy.array

The images.

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

dtype : None or numpy data type

The data type for displaying the images.

fig_idx : int

matplotlib figure index.

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
>>> tl.visualize.images2d(X_train[0:100,:,:,:], second=10, saveable=False, name='cifar10', dtype=np.uint8, fig_idx=20212)

可视化词嵌入矩阵

tensorlayer.visualize.tsne_embedding(embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862)[源代码]

Visualize the embeddings by using t-SNE.

Parameters:

embeddings : a matrix

The images.

reverse_dictionary : a dictionary

id_to_word, mapping id to unique word.

plot_only : int

The number of examples to plot, choice the most common words.

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> see 'tutorial_word2vec_basic.py'
>>> final_embeddings = normalized_embeddings.eval()
>>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary,
... plot_only=500, second=5, saveable=False, name='tsne')

艾伯特(http://www.aibbt.com/)国内第一家人工智能门户

TensorLayer官方中文文档1.7.4:API – 可视化的更多相关文章

  1. TensorLayer官方中文文档1.7.4:API – 数据预处理

    所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 Tens ...

  2. TensorLayer官方中文文档1.7.4:API – 强化学习

    API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...

  3. Keras官方中文文档:函数式模型API

    \ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...

  4. ReactNative官方中文文档0.21

    整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm  百度盘下载:ReactNative0.21中文文档 来源: ...

  5. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  6. 学习Python 新去处:Python 官方中文文档

    Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ...

  7. django2.0 官方中文文档地址

    django2.0 官方开始发布中文文档了,之前还想着一直翻译完成所有有必要的内容,想着可以省事一些了,打开以后看了一下,发现官方的中文文档还没翻译完成, 现在(2018-7-10)最新章节是是  编 ...

  8. mysql 新手入门 官方文档+官方中文文档附地址

    点评: 官方文档地址 官方中文文档地址 sql语句扩展

  9. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

随机推荐

  1. 日均数据量千万级,MySQL、TiDB两种存储方案的落地对比

    http://mp.weixin.qq.com/s?__biz=MzIzNjUxMzk2NQ==&mid=2247484743&idx=1&sn=04337e020d268a9 ...

  2. ansible安装

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 1.配置epel源 wget -O /etc/yum.repos.d ...

  3. Mac下PyCharm快捷键大全

    Mac键盘符号和修饰键说明 ⌘ Command ⇧ Shift ⌥ Option ⌃ Control ↩︎ Return/Enter ⌫ Delete ⌦ 向前删除键(Fn+Delete) ↑ 上箭头 ...

  4. 利用Python爬取可用的代理IP

    前言 就以最近发现的一个免费代理IP网站为例:http://www.xicidaili.com/nn/.在使用的时候发现很多IP都用不了. 所以用Python写了个脚本,该脚本可以把能用的代理IP检测 ...

  5. HDU 5060

    题意略. 这个题目最关键的是在于计算球冠的体积.令球冠体积为V. 我们可以用祖暅原理来计算V, 这里,可以看出,球冠的体积等于左图的上半个圆柱减去那个倒扣的圆台. 祖暅原理:界于两个平行平面之间的两个 ...

  6. Java多线程推荐使用的停止方法和暂停方法

    判断线程结束和让线程结束 package cn.lonecloud.Thread.study; /** * 用于循环1000次的线程 * @Title: Run1000Thread.java * @P ...

  7. 老男孩Python全栈开发(92天全)视频教程 自学笔记20

    day20课程内容: 模块: #模块一共三种:1.Python标准库 2.第三方模块 3.应用程序自定义的模块#import sysimport jisuanapp#print(jisuanapp.a ...

  8. Android动态加载技术(插件化技术)

    No1: 插件化技术的好处: 1)减轻应用的内存和CPU占用 2)实现热插拔,即在不发布新版本的情况下更新某些模块 No2: 插件化方案必须要解决三个基础性问题:资源访问.Activity生命周期的管 ...

  9. A.Alyona and copybooks

    这题考查思维的全面性. 一开始我直接分类推公式,余数不同分类讨论. AC代码: #include<cstdio> #include<algorithm> using names ...

  10. JVM笔记4-对象的创建

    1.对象的创建过程: 1.new 类名 2.根据new的参数在常量池中定位一个类的符号的引用. 3.如果没找到这个符号的引用,说明类还没有被加载.则进行类的加载,解析和初始化 4.虚拟机为对象分配内存 ...