TensorLayer官方中文文档1.7.4:API – 可视化
API - 可视化¶
TensorFlow 提供了可视化模型和激活输出等的工具 TensorBoard。
在这里,我们进一步提供一些可视化模型参数和数据的函数。
read_image (image[, path]) |
Read one image. |
read_images (img_list[, path, n_threads, ...]) |
Returns all images in list by given path and name of each image file. |
save_image (image[, image_path]) |
Save one image. |
save_images (images, size[, image_path]) |
Save mutiple images into one single image. |
draw_boxes_and_labels_to_image (image[, ...]) |
Draw bboxes and class labels on image. |
W ([W, second, saveable, shape, name, fig_idx]) |
Visualize every columns of the weight matrix to a group of Greyscale img. |
CNN2d ([CNN, second, saveable, name, fig_idx]) |
Display a group of RGB or Greyscale CNN masks. |
frame ([I, second, saveable, name, cmap, fig_idx]) |
Display a frame(image). |
images2d ([images, second, saveable, name, ...]) |
Display a group of RGB or Greyscale images. |
tsne_embedding (embeddings, reverse_dictionary) |
Visualize the embeddings by using t-SNE. |
读取与保存图片¶
读取单个图片¶
-
tensorlayer.visualize.
read_image
(image, path='')[源代码]¶ -
Read one image.
Parameters: images : string, file name.
path : string, path.
读取多个图片¶
-
tensorlayer.visualize.
read_images
(img_list, path='', n_threads=10, printable=True)[源代码]¶ -
Returns all images in list by given path and name of each image file.
Parameters: img_list : list of string, the image file names.
path : string, image folder path.
n_threads : int, number of thread to read image.
printable : bool, print infomation when reading images, default is True.
保存单个图片¶
-
tensorlayer.visualize.
save_image
(image, image_path='')[源代码]¶ -
Save one image.
Parameters: images : numpy array [w, h, c]
image_path : string.
保存多个图片¶
-
tensorlayer.visualize.
save_images
(images, size, image_path='')[源代码]¶ -
Save mutiple images into one single image.
Parameters: images : numpy array [batch, w, h, c]
size : list of two int, row and column number.
number of images should be equal or less than size[0] * size[1]
image_path : string.
Examples
>>> images = np.random.rand(64, 100, 100, 3)
>>> tl.visualize.save_images(images, [8, 8], 'temp.png')
保存目标检测图片¶
tensorlayer.visualize.
draw_boxes_and_labels_to_image
(image, classes=[], coords=[], scores=[], classes_list=[], is_center=True, is_rescale=True, save_name=None)[源代码]¶-
Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of
tl.prepro
.Parameters: image : RGB image in numpy.array, [height, width, channel].
classes : a list of class ID (int).
coords : a list of list for coordinates.
- Should be [x, y, x2, y2] (up-left and botton-right format)
- If [x_center, y_center, w, h] (set is_center to True).
scores : a list of score (float). (Optional)
classes_list : list of string, for converting ID to string on image.
is_center : boolean, defalt is True.
If coords is [x_center, y_center, w, h], set it to True for converting [x_center, y_center, w, h] to [x, y, x2, y2] (up-left and botton-right).
If coords is [x1, x2, y1, y2], set it to False.is_rescale : boolean, defalt is True.
If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally.
If False, feed the coordinates with pixel unit format.save_name : None or string
The name of image file (i.e. image.png), if None, not to save image.
References
- OpenCV rectangle and putText.
- scikit-image.
可视化模型参数¶
可视化Weight Matrix¶
-
tensorlayer.visualize.
W
(W=None, second=10, saveable=True, shape=[28, 28], name='mnist', fig_idx=2396512)[源代码]¶ -
Visualize every columns of the weight matrix to a group of Greyscale img.
Parameters: W : numpy.array
The weight matrix
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
shape : a list with 2 int
The shape of feature image, MNIST is [28, 80].
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
可视化CNN 2d filter¶
tensorlayer.visualize.
CNN2d
(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362)[源代码]¶-
Display a group of RGB or Greyscale CNN masks.
Parameters: CNN : numpy.array
The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
可视化图像¶
matplotlib显示单图¶
tensorlayer.visualize.
frame
(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836)[源代码]¶-
Display a frame(image). Make sure OpenAI Gym render() is disable before using it.
Parameters: I : numpy.array
The image
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
cmap : None or string
'gray' for greyscale, None for default, etc.
fig_idx : int
matplotlib figure index.
Examples
>>> env = gym.make("Pong-v0")
>>> observation = env.reset()
>>> tl.visualize.frame(observation)
matplotlib显示多图¶
tensorlayer.visualize.
images2d
(images=None, second=10, saveable=True, name='images', dtype=None, fig_idx=3119362)[源代码]¶-
Display a group of RGB or Greyscale images.
Parameters: images : numpy.array
The images.
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
dtype : None or numpy data type
The data type for displaying the images.
fig_idx : int
matplotlib figure index.
Examples
>>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
>>> tl.visualize.images2d(X_train[0:100,:,:,:], second=10, saveable=False, name='cifar10', dtype=np.uint8, fig_idx=20212)
可视化词嵌入矩阵¶
tensorlayer.visualize.
tsne_embedding
(embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862)[源代码]¶-
Visualize the embeddings by using t-SNE.
Parameters: embeddings : a matrix
The images.
reverse_dictionary : a dictionary
id_to_word, mapping id to unique word.
plot_only : int
The number of examples to plot, choice the most common words.
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> see 'tutorial_word2vec_basic.py'
>>> final_embeddings = normalized_embeddings.eval()
>>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary,
... plot_only=500, second=5, saveable=False, name='tsne')
艾伯特(http://www.aibbt.com/)国内第一家人工智能门户
TensorLayer官方中文文档1.7.4:API – 可视化的更多相关文章
- TensorLayer官方中文文档1.7.4:API – 数据预处理
所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 Tens ...
- TensorLayer官方中文文档1.7.4:API – 强化学习
API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...
- Keras官方中文文档:函数式模型API
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...
- ReactNative官方中文文档0.21
整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm 百度盘下载:ReactNative0.21中文文档 来源: ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- 学习Python 新去处:Python 官方中文文档
Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ...
- django2.0 官方中文文档地址
django2.0 官方开始发布中文文档了,之前还想着一直翻译完成所有有必要的内容,想着可以省事一些了,打开以后看了一下,发现官方的中文文档还没翻译完成, 现在(2018-7-10)最新章节是是 编 ...
- mysql 新手入门 官方文档+官方中文文档附地址
点评: 官方文档地址 官方中文文档地址 sql语句扩展
- PyTorch官方中文文档:torch.optim 优化器参数
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...
随机推荐
- react小结
react基础小结 1. 例子 import React from 'react' import { render } from 'react-dom' // 定义组件 class Hello ext ...
- 二维码开源库ZBar-实现中文解码
中文乱码 上篇<ZBar-windows下编译和使用>已经成功解析了条形码,但目标是二维码,经测试二维码中文会出现乱码.下图二维码的内容是"http123测试456", ...
- 使用websocket实现在线聊天功能
很早以前为了快速达到效果,使用轮询实现了在线聊天功能,后来无意接触了socket,关于socket我的理解是进程间通信,首先要有服务器跟客户端,服务的启动监听某ip端口定位该进程,客户端开启socke ...
- [poj3565]Ants
[poj3565]Ants 标签(空格分隔):二分图 描述 Young naturalist Bill studies ants in school. His ants feed on plant-l ...
- JMeter之Http协议接口性能测试
一.不同角色眼中的接口 1.1,开发人员眼中的接口 1.2,测试人员眼中的接口 二.Http协议基本介绍 2.1,常见的接口协议 1.:2. :3. :4.:5.: 6. 2.2,Http协议栈 ...
- bzoj 2209 [Jsoi2011]括号序列 平衡树
2209: [Jsoi2011]括号序列 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1404 Solved: 699[Submit][Statu ...
- .addClass(),.removeClass(),.toggleClass()的区别
.addClass("className")方法是用来给指定元素增加类名,也就是说给指定的元素追加样式: 可以同时添加多个类名,空格符隔开 $("selector&quo ...
- PHP 对象数组和一般的数组的相互转化
Yii2中的对象转数组: $video = Video::find()->asArray()->one(); 把数组转化成任何你想要的对象类型的数组: function array2obj ...
- 高并发关于微博、秒杀抢单等应用场景在PHP环境下结合Redis队列延迟入库
第一步:创建模拟数据表. CREATE TABLE `test_table` ( `id` int(11) NOT NULL AUTO_INCREMENT, `uid` int(11) NOT NUL ...
- 【BZOJ1565】 植物大战僵尸
Description Input Output 仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何攻击,这样能源收入为0. Sample Input 3 2 10 0 20 0 ...