题目

一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题。

而这道题就是比较经典的可以用悬线法来处理的题。

而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然后递推或者说是DP,这样在每次递推完之后就可以更新最小值了。

  • \([height_{i, j}]\) :表示以\((i,j)\)为底的悬线的
  • \([left_{i,j}]\) :表示向左最多能移动到的位置
  • \([right_{i,j}]\) :表示向右最多能移动到的位置
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
int n, m, ans1, ans2;
int data[1010][1010], lef[1010][1010], righ[1010][1010], height[1010][1010];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
scanf("%d", &data[i][j]);
lef[i][j] = righ[i][j] = j;
height[i][j] = 1;
}
for (int i = 1; i <= n; i++)
for (int j = 2; j <= m; j++)
if (data[i][j] != data[i][j - 1])
lef[i][j] = lef[i][j - 1];
for (int i = 1; i <= n; i++)
for (int j = m - 1; j >= 1; --j)
if (data[i][j] != data[i][j + 1])
righ[i][j] = righ[i][j + 1];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
if (i != 1 && data[i][j] != data[i - 1][j])
{
lef[i][j] = max(lef[i][j], lef[i - 1][j]);
righ[i][j] = min(righ[i][j], righ[i - 1][j]);
height[i][j] = height[i - 1][j] + 1;
}
int a = righ[i][j] - lef[i][j] + 1;
int b = min(a, height[i][j]);
ans1 = max(ans1, b * b);
ans2 = max(ans2, a * height[i][j]);
}
printf("%d\n%d", ans1, ans2);
}

洛谷P1169[ZJOI2007]棋盘制作的更多相关文章

  1. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  2. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  3. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  4. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

  5. [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我 ...

  6. BZOJ1057或洛谷1169 [ZJOI2007]棋盘制作

    BZOJ原题链接 洛谷原题链接 设\(L[i][j],R[i][j],H[i][j]\)表示点\((i,j)\)向左.右.上尽量拓展的左端点.右端点.上端点的坐标. \(L,R\)直接初始化好,\(H ...

  7. 洛谷1169 [ZJOI2007] 棋盘制作

    题目链接 题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形. 解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩 ...

  8. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  9. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

随机推荐

  1. 关于jQuery中的选择器

    1:选择器的作用 获取网页的上面的标签元素等等,然后对他进行一些列的操作(添加样式,添加行为...) 2:选择器有哪些 基本选择器,层次选择器,过滤选择器,表单选择器 一:基本选择器 基本选择器是jq ...

  2. phpstorm 代码注释后,撤销某段代码的注释的,快捷键是什么?

    phpstorm 的代码注释有两种风格,一种是双斜杠,另一种是 /* ...  */风格,两者的快捷键都是开关式(即按第一次为注释,再按一次为撤销注释),快捷键如下: 1.双斜杠注释   Ctrl + ...

  3. css的三种书写方式

    一.内联样式 <p style="color: sienna; margin-left: 20px"> This is a paragraph </p> 二 ...

  4. Odoo 强大的开源微信模块 oejia_wx

    详见:http://oejia.net/blog/2018/10/24/oejia_wx_v054.html oejia_wx Odoo 的微信模块,提供了对微信公众号.企业号(企业微信)及小程序的接 ...

  5. mac git从代码仓库克隆代码,修改并上传

    1:添加本地秘钥到代码仓库中 open ~/ .ssh 以github为例: mac 命令行输入open ~/ .ssh,打开id_rsa.pub文件中的内容,复制到github->settin ...

  6. 前端开发之基础知识-HTML(二)

    1.6 html链接 html链接 <a>标签可以在网页上定义一个链接地址,通过src属性定义跳转的地址,通过title属性定义鼠标悬停时弹出的提示文字框. <a href=&quo ...

  7. DataPipeline | 享物说产品负责人夏凯:数据驱动的用户增长实战

    夏凯 卡内基梅隆大学计算机系毕业,曾供职于Evernote数据团队和微软Bing.com搜索引擎广告部门.回国后作为早期成员加入小红书,先后从事大数据,用户增长,项目和团队管理等工作. 我最初是在美国 ...

  8. go的生产者-消费者模式

    package main import ( "fmt" "math/rand" "time" ) // 数据生产者 func produce ...

  9. pwnable.kr input解题记录

    pwnable input解题记录 给了源码如下: #include "stdio.h" #include "unistd.h" #include " ...

  10. Ubuntu 16.04 安装GIMP绘图软件

    Ubuntu上比较好用的绘图软件,GIMP,安装方法如下: 终端输入 : sudo apt-get install gimp ,回车,输入密码,即可安装简单易行. 输入 :gimp ,启动程序.