题目

一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题。

而这道题就是比较经典的可以用悬线法来处理的题。

而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然后递推或者说是DP,这样在每次递推完之后就可以更新最小值了。

  • \([height_{i, j}]\) :表示以\((i,j)\)为底的悬线的
  • \([left_{i,j}]\) :表示向左最多能移动到的位置
  • \([right_{i,j}]\) :表示向右最多能移动到的位置
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
int n, m, ans1, ans2;
int data[1010][1010], lef[1010][1010], righ[1010][1010], height[1010][1010];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
scanf("%d", &data[i][j]);
lef[i][j] = righ[i][j] = j;
height[i][j] = 1;
}
for (int i = 1; i <= n; i++)
for (int j = 2; j <= m; j++)
if (data[i][j] != data[i][j - 1])
lef[i][j] = lef[i][j - 1];
for (int i = 1; i <= n; i++)
for (int j = m - 1; j >= 1; --j)
if (data[i][j] != data[i][j + 1])
righ[i][j] = righ[i][j + 1];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
if (i != 1 && data[i][j] != data[i - 1][j])
{
lef[i][j] = max(lef[i][j], lef[i - 1][j]);
righ[i][j] = min(righ[i][j], righ[i - 1][j]);
height[i][j] = height[i - 1][j] + 1;
}
int a = righ[i][j] - lef[i][j] + 1;
int b = min(a, height[i][j]);
ans1 = max(ans1, b * b);
ans2 = max(ans2, a * height[i][j]);
}
printf("%d\n%d", ans1, ans2);
}

洛谷P1169[ZJOI2007]棋盘制作的更多相关文章

  1. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  2. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  3. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  4. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

  5. [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我 ...

  6. BZOJ1057或洛谷1169 [ZJOI2007]棋盘制作

    BZOJ原题链接 洛谷原题链接 设\(L[i][j],R[i][j],H[i][j]\)表示点\((i,j)\)向左.右.上尽量拓展的左端点.右端点.上端点的坐标. \(L,R\)直接初始化好,\(H ...

  7. 洛谷1169 [ZJOI2007] 棋盘制作

    题目链接 题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形. 解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩 ...

  8. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  9. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

随机推荐

  1. 推荐三个 VSCode 摸鱼插件

    周三是一周中最难以度过的一天,离上个周末过去了两天,离下个周末也还有两天.为了让各位更好地搬(mo)砖(yu),今天给大家推荐三款效(mo)率(yu)工(shen)具(qi)! 一.听歌插件 1 功能 ...

  2. ASP.NET WebApi系列

    ASP.NET Web API 是一种框架,用于轻松构建可以访问多种客户端(包括浏览器和移动设备)的 HTTP 服务. ASP.NET Web API 是一种用于在 .NET Framework 上构 ...

  3. 前端零基础 --css转换--skew斜切变形 transfor 3d

    前端零基础 --css转换--skew斜切变形 transfor 3d==============重要不紧急! 重要紧急 重要不紧急 不重要紧急 不重要不紧急

  4. 微信小程序 canvas 文字自动换行

    Page({ drawCanvas: function(ctx) {// 地址 ctx.setFontSize() ctx.setFillStyle('#9E7240') ctx.textAlign= ...

  5. java 设计模式 ---- 工场模式

    官方描述: 定义一个创建对象的接口,让其子类自己决定实例化哪一个工厂类 土话描述: 先把所有的情况设先计出来, 后面根据条件实现哪种情况 比如我想找女朋友, 喜欢的类型可能是: 屁股大的, 胸挺的, ...

  6. 工具资源系列之给虚拟机装个ubantu

    前文我们已经讲解了如何在 mac 系统上安装虚拟机软件,这节我们接着讲解如何利用虚拟机安装 Ubuntu 镜像. 安装镜像的大致步骤基本相同,只不过是配置项略显不同而已,如果需要安装其他系统镜像,请参 ...

  7. DotNetCore + Sonar + Coverlet 代码覆盖率检查

    一,下载 sonar-scanner-msbuild 我当前下载的最新版本是:sonar-scanner-msbuild-4.5.0.1761-netcoreapp2.0 https://docs.s ...

  8. MacBook Pro 安装win7 64 成功安装过程总结

    安装对象: MacBook Pro (13 英寸, 2010 年中) 中安装win7 64位操作系统(原版安装非Ghost),且只保留win7系统即可. 场景还原: 拿到笔记本时,笔记本中已无Mac ...

  9. Doctype知识点总结

    DOCTYPE是document type (文档类型) 的缩写.<!DOCTYPE >声明位于文档的最前面,处于标签之前,它不是html标签.主要作用是告诉浏览器的解析器使用哪种HTML ...

  10. 这可能是最简单的Page Object库

    做过web自动化测试的同学,对Page object设计模式应该不陌生. Page object库应该根据以下目标开发: Page object应该易于使用 清晰的结构 PageObjects 对于页 ...