[HNOI 2018]道路
Description
给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路。对于每个节点,选择一条与其儿子相连的铁路或公路。对于每个叶子节点 \(u\) ,含有三个参数 \(a,b,c\) ,记 \(u\) 到根节点一共需要经过 \(x\) 条未选择的公路与 \(y\) 条未选择的铁路,其代价为
\[c_u \cdot (a_u + x) \cdot (b_u + y)\]
求最小的总代价和。
\(n \le 20000\) , \(1 \le a_i,b_i \le 60\) , \(1 \le c_i \le 10^9\) ,二叉树深度不超过 \(40\) 。
Solution
传说中的普及 \(dp\) 。
记 \(f_{i,j,k}\) 为 \(i\) 这个节点到根节点路径上一共需要经过 \(j\) 条未选择的公路与 \(k\) 条未选择的铁路,其子树中最小的代价和。
答案就是 \(f_{1,0,0}\) 。
转移就是考虑当前节点选择铁路还是选择公路。
时间复杂度和空间复杂度为 \(O(40^2n)\) 。
Code
#include <bits/stdc++.h>
#define ll long long
#define F(o, i, j) (1ll*c[o]*(i+a[o])*(j+b[o]))
using namespace std;
const int N = 20000+5;
int n, a[N], b[N], c[N], ls[N], rs[N];
ll f[N][41][41];
void dfs(int o, int dep) {
if (o < 0) return;
int l = ls[o], r = rs[o];
dfs(l, dep+1), dfs(r, dep+1);
for (int i = 0; i <= dep; i++)
for (int j = 0; j <= dep; j++) {
if (l < 0 && r < 0) f[o][i][j] = min(F(-l, i+1, j)+F(-r, i, j), F(-l, i, j)+F(-r, i, j+1));
else if (l < 0) f[o][i][j] = min(F(-l, i+1, j)+f[r][i][j], F(-l, i, j)+f[r][i][j+1]);
else if (r < 0) f[o][i][j] = min(f[l][i+1][j]+F(-r, i, j), f[l][i][j]+F(-r, i, j+1));
else f[o][i][j] = min(f[l][i+1][j]+f[r][i][j], f[l][i][j]+f[r][i][j+1]);
}
}
void work() {
scanf("%d", &n);
memset(f, 127/3, sizeof(f));
for (int i = 1; i < n; i++) scanf("%d%d", &ls[i], &rs[i]);
for (int i = 1; i <= n; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]);
dfs(1, 0);
printf("%lld\n", f[1][0][0]);
}
int main() {work(); return 0; }
[HNOI 2018]道路的更多相关文章
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- 【HNOI 2018】道路
Problem Description \(W\) 国的交通呈一棵树的形状.\(W\) 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1 ...
- [HNOI 2014]道路堵塞
Description A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国 交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有 ...
- [HNOI/AHOI2018]道路
Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...
- HNOI 2018 简要题解
寻宝游戏 毒瘤题. 估计考试只会前30pts30pts30pts暴力然后果断走人. 正解是考虑到一个数&1\&1&1和∣0|0∣0都没有变化,&0\&0& ...
- [HNOI 2018]游戏
Description 题库链接 有 \(n\) 个房间排成一列,编号为 \(1,2,...,n\) ,相邻的房间之间都有一道门.其中 \(m\) 个门上锁,其余的门都能直接打开.现在已知每把锁的钥匙 ...
- [HNOI 2018]排列
Description 题库链接 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le ai \le n\) ,以及 \(n\) 个整数 \(w_1, w_2, \do ...
- 【题解】Luogu P4438 [HNOI/AHOI2018]道路
原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...
- 【HNOI 2018】毒瘤
Problem Description 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的数据结构题:给出一个数组,要求支持若干种奇奇怪怪的修改操作(例如给一个区间内的数同时加上 \(c ...
随机推荐
- chrome浏览器访问google插件
访问google其实很多时候都是为了搜索资料,本文分享下,chrome浏览器访问google插件 下载地址:http://www.ggfwzs.com/ 1,下载完成后,解压: 如下: 2,打开谷歌浏 ...
- 第1次作业:no blog no fun
1.先回答老师的问题 第一部分:结缘计算机 读了进入2012 -- 回顾我走过的编程之路后,我试着回顾了我的编程生涯的开始.我最原始的记忆就是老爸教我用电脑玩连连看,那时候的显示器应该是C ...
- 2017级C语言教学总结
一个学期下来,对于这门课教学还是感受挺多,多个教学平台辅助,确实和我前10年的教学方式区别很多,也辛苦很多. 一.课堂教学方面 1.课堂派预习作业 主要借助课堂派平台,每次课前发布预习作业.而预习作业 ...
- 20145237《Java程序设计》第一周学习总结
教材学习内容总结 java可分为Java SE.Java EE.Java ME三大平台. java SE分为JVM.JRE.JDK.与java语言四个部分. JRE包括java SE API和JVM. ...
- 自主学习之RxSwift(一) -----Driver
对于RxSwift,我也是初学者,此系列来记录我学习RxSwift的历程! (一) 想必关于Drive大家一定在RxSwift的Demo中看到过,也一定有些不解,抱着一起学习的态度,来了解一下Driv ...
- Python扩展模块——selenium的使用(定位、下载文件等)
想全面的使用selenium可以下载<selenium 2自动化测试实战-基于Python语言>PDF的电子书看看 我使用到了简单的浏览器操作,下载文件等功能... 推荐使用firefox ...
- 第一章 jQuery基础
第一章jQuery基础 一.jQuert简介 1.什么是jQuery jQuery是javaScript的程序库之一,它是javaScript对象和实用函数的封装. jQuery是继Prototype ...
- 如何排查CPU飙升的Java问题
1. JPS 查看jvm进程 2. 显示线程列表 ps -mp pid -o THREAD,tid,time 找到了耗时最高的线程tid 3. tid转换成16进制 printf "%x\n ...
- 修改hosts 流畅使用coursera
以管理员权限打开 C盘 -> Windows-> System32 -> drives -> etc -> hosts文件 在hosts文件最后写入 52.84.246 ...
- mysql中的视图、事务和索引
视图: 对于一个sql查询,如果发生了修改,就需要修改sql语句. 我们可以通过定义视图来解决问题.改变需求之后就改变视图. 视图是对查询的封装 定义视图: create view 视图名称 as s ...