[HNOI 2018]道路
Description
给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路。对于每个节点,选择一条与其儿子相连的铁路或公路。对于每个叶子节点 \(u\) ,含有三个参数 \(a,b,c\) ,记 \(u\) 到根节点一共需要经过 \(x\) 条未选择的公路与 \(y\) 条未选择的铁路,其代价为
\[c_u \cdot (a_u + x) \cdot (b_u + y)\]
求最小的总代价和。
\(n \le 20000\) , \(1 \le a_i,b_i \le 60\) , \(1 \le c_i \le 10^9\) ,二叉树深度不超过 \(40\) 。
Solution
传说中的普及 \(dp\) 。
记 \(f_{i,j,k}\) 为 \(i\) 这个节点到根节点路径上一共需要经过 \(j\) 条未选择的公路与 \(k\) 条未选择的铁路,其子树中最小的代价和。
答案就是 \(f_{1,0,0}\) 。
转移就是考虑当前节点选择铁路还是选择公路。
时间复杂度和空间复杂度为 \(O(40^2n)\) 。
Code
#include <bits/stdc++.h>
#define ll long long
#define F(o, i, j) (1ll*c[o]*(i+a[o])*(j+b[o]))
using namespace std;
const int N = 20000+5;
int n, a[N], b[N], c[N], ls[N], rs[N];
ll f[N][41][41];
void dfs(int o, int dep) {
if (o < 0) return;
int l = ls[o], r = rs[o];
dfs(l, dep+1), dfs(r, dep+1);
for (int i = 0; i <= dep; i++)
for (int j = 0; j <= dep; j++) {
if (l < 0 && r < 0) f[o][i][j] = min(F(-l, i+1, j)+F(-r, i, j), F(-l, i, j)+F(-r, i, j+1));
else if (l < 0) f[o][i][j] = min(F(-l, i+1, j)+f[r][i][j], F(-l, i, j)+f[r][i][j+1]);
else if (r < 0) f[o][i][j] = min(f[l][i+1][j]+F(-r, i, j), f[l][i][j]+F(-r, i, j+1));
else f[o][i][j] = min(f[l][i+1][j]+f[r][i][j], f[l][i][j]+f[r][i][j+1]);
}
}
void work() {
scanf("%d", &n);
memset(f, 127/3, sizeof(f));
for (int i = 1; i < n; i++) scanf("%d%d", &ls[i], &rs[i]);
for (int i = 1; i <= n; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]);
dfs(1, 0);
printf("%lld\n", f[1][0][0]);
}
int main() {work(); return 0; }
[HNOI 2018]道路的更多相关文章
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- 【HNOI 2018】道路
Problem Description \(W\) 国的交通呈一棵树的形状.\(W\) 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1 ...
- [HNOI 2014]道路堵塞
Description A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国 交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有 ...
- [HNOI/AHOI2018]道路
Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...
- HNOI 2018 简要题解
寻宝游戏 毒瘤题. 估计考试只会前30pts30pts30pts暴力然后果断走人. 正解是考虑到一个数&1\&1&1和∣0|0∣0都没有变化,&0\&0& ...
- [HNOI 2018]游戏
Description 题库链接 有 \(n\) 个房间排成一列,编号为 \(1,2,...,n\) ,相邻的房间之间都有一道门.其中 \(m\) 个门上锁,其余的门都能直接打开.现在已知每把锁的钥匙 ...
- [HNOI 2018]排列
Description 题库链接 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le ai \le n\) ,以及 \(n\) 个整数 \(w_1, w_2, \do ...
- 【题解】Luogu P4438 [HNOI/AHOI2018]道路
原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...
- 【HNOI 2018】毒瘤
Problem Description 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的数据结构题:给出一个数组,要求支持若干种奇奇怪怪的修改操作(例如给一个区间内的数同时加上 \(c ...
随机推荐
- Python基本数据结构--列表
列表: 1.有序的集合: 2.通过偏移来索引,从而读取数据: 3.支持嵌套: 4.可变的类型: 列表的操作: 1.切片: a = [1,2,3,4,5,6,7] 正向索引 反向索引 默认索引 2.添加 ...
- 201621123040《Java程序设计》第十一周学习总结
1.本周学习总结 1.1以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2.书面作业 2.1源代码阅读:多线程程序BounceThread 2.1.1BallRunnable类有什么用?为什 ...
- idea 导eclipse项目
https://www.cnblogs.com/xiaoBlog2016/archive/2017/05/08/6825014.html
- BEM 中文翻译
BEM 原文请看 getBEM Introduction(介绍) Block 独立实体,独立的意义 Examples:header, container, menu, checkbox, input ...
- MySQL InnoDB锁机制
概述: 锁机制在程序中是最常用的机制之一,当一个程序需要多线程并行访问同一资源时,为了避免一致性问题,通常采用锁机制来处理.在数据库的操作中也有相同的问题,当两个线程同时对一条数据进行操作,为了保证数 ...
- ES6常用新特性
https://segmentfault.com/a/1190000011976770?share_user=1030000010776722 该文章为转载文章!仅个人喜好收藏文章! 1.前言 前几天 ...
- windows 7 netsh wlan命令连接wifi
显示本机保存的profiles,配置文件是以wifi的ssid命名的. netsh wlan show profiles 用netsh wlan connect name=00_1111 连接其中一个 ...
- thinkphp中定义自己的函数
可以在前台和后台的公共文件夹中common.php中定义自己的函数,这样就可以在控制器中调用,而不需要调用对象了 /** * @name addvtorandp * @author 黄峰1664253 ...
- 搭建一个web服务下载HDFS的文件
需求描述 为了能方便快速的获取HDFS中的文件,简单的搭建一个web服务提供下载很方便快速,而且在web服务器端不留临时文件,只做stream中转,效率相当高! 使用的框架是SpringMVC+HDF ...
- cookie中存中文
cookie中存中文 1:想要在cookie中存中文:需要用到URLEncoder(在jdkAPI中有介绍) Cookie cookie = new Cookie("User",U ...