AVL Tree 操作
1.AVL树是带有平衡条件的二叉查找树, 一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树。
2.AVL树的删除要比插入复杂。如果删除相对较少,那么用懒惰删除的方法是最好的策略。
3.AVL树的插入操作:
#ifndef _AvlTree_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
typedef ElementType int;
AvlTree Insert(ElmentType X,AvlTree T);
AvlTree MakeEmpty(AvlTree T);
Position Find(ElementType X,AvlTree T);
Position FindMax(AvlTree T);
Position FindMin(AvlTree T);
AvlTree Delete(ElementType X,AvlTree T);
ElementType Retrieve(Position P);
#endif;
struct AvlNode //定义一个树结构,包含了树的高度
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
int Height(Position P) //取得树的高
{
if(P==NULL)
return -;
else
return P->Height; }
int Max(AvlTree T1, AvlTree T2) //获得大值
{
if(T1->Height>T2->Height)
return T1->Height;
else
return T2->Height;
} AvlTree Insert(ElmentType x,AvlTree T) // 树的插入
{
if(T==NULL)
{
T=new AvlTree();
T->Element=x;
T->Left=NULL;
T->Right=NULL;
T->Height=;
}
else if(x<T->Element) //插入到当前树的左子树中
{
T->Left=Insert(x,T->Left);
if(Height(T->Left)-Height(T->Right)==)//如果树不平衡
{
if(x<T->Left->Element) //左左插入只需要进行单旋转
T=SingleRotateWithLeft(T);
else //左右插入需要进行双旋转,单旋转不能改变去不平衡的状态
T=DoubleRotateWithLeft(T);
}
}
else if(x>T->Element)//插入到当前树的右子树中
{
T->Right=Insert(x,T->Right);
if(Height(T->Right)-Height(T->Left)==)
{
if(x>T->Right->Element) //右右插入只需要进行单旋转
T=SingleRotateWithRight(T);
else //右左插入需要进行双旋转,单旋转不能改变去不平衡的状态
T=DoubleRotateWithRight(T);
}
}
else{cout<<"error:不能插入相同的树结点"};
T->Height=Max(Height(T->Left),Height(T->Right))+;
return T;
} Position singleRotateWithLeft(Position K2)//左左单旋
{
Position K1;
K1=K2->Left;
K2->Left=K1->Right;
K1->Right=K2;
K2->Height=Max(Height(K2->Left),Height(K2->Right))+;
K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
return K1;
}
Position singleRotateWithRight(Position K2)//右右单旋
{
Position K1;
K1=K2->Right;
K2->Right=K1->Left;
K1->Left=K2;
K2->Height=Max(Height(K2->Left),Height(K2->Right)+;
K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
return K1;
}
Position DoubleRotateWithLeft(Position K3)//左右双旋
{
Position K1,K2;
K2=K3->Left;
K1=K2->Right;
k2->Right=K1->Left;
K3->Left=K1->Right;
K1->Left=K2;
K1->Right=K3; K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
K2->Height=Max(Height(K2->Left),Height(K2->Right)+;
K3->Height=Max(Height(K3->Left),Height(K3->Right)+; } Position DoubleRotateWithRight(Position K3)//右左双旋
{
//Rotate between k1 and K2;
K3->Right=singleRotateWithLeft(K3->Right);
//Rotate between k2 and k3;
return singleRotateWithRight(K3); }
AVL Tree 操作的更多相关文章
- 04-树5 Root of AVL Tree + AVL树操作集
平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- PTA (Advanced Level) 1066 Root of AVL Tree
Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...
- 平衡二叉树(AVL Tree)
在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树. (由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- 转载:平衡二叉树(AVL Tree)
平衡二叉树(AVL Tree) 转载至:https://www.cnblogs.com/jielongAI/p/9565776.html 在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简 ...
随机推荐
- ECMAScript 6之变量的解构赋值
1,数组的解构赋值 基本用法 ES6允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 以前,为变量赋值,只能直接指定值. var a = 1; va ...
- WebView 简介
WebView 简介 日期: 2013年10月29日 注意: API可能有演进,所以需要看当前时间决定是否有用 继承结构: public class WebView extends AbsoluteL ...
- DesignModeler GestureRecgin…
DesignModeler : 设计模式 GestureRecginzer:手势识别 作者:韩俊强 原创版权地址:http://blog.sina.com.cn/s/blog_814ecfa9 ...
- C++ Primer 有感(函数)
1.函数应该在头文件中声明,并在源文件中定义.(定义函数的源文件应包含声明该函数的头文件)将提供函数声明的头文件包含在定义该函数的源文件中,可使编译器能检查该函数的定义和声明是否一致. 2.既可以在函 ...
- 阿里云服务器实战(二): Linux MySql5.6数据库乱码问题
在阿里云上了买了一个云服务器, 部署了一个程序,发现插入数据库后乱码了,都成了'????'. 一开始怀疑是Tomcat7的原因 , 见文章 : http://blog.csdn.net/johnny ...
- Java之美[从菜鸟到高手演变]之设计模式二
在阅读过程中有任何问题,请及时联系:egg. 邮箱:xtfggef@gmail.com 微博:http://weibo.com/xtfggef 如有转载,请说明出处:http://blog.csdn. ...
- FFMPEG列出DirectShow支持的设备
FFMPEG列出dshow支持的设备: ffmpeg -list_devices true -f dshow -idummy 举例: 采集摄像头和麦克风 ffmpeg -f dshow -i vide ...
- 基于GraphCuts图割算法的图像分割----OpenCV代码与实现
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 1.绪论 图切割算法是组合图论 ...
- 传输控制协议(TCP) -- TCP状态转换图
TCP状态转换图 在<UNIX网络编程 卷1>一书中,作者给出了TCP状态转换图(如下).本文也将围绕此图进行阐释. 注:上图红框表示比较特殊的地方. TCP状态转换两条主线 图2-4中的 ...
- ViewPagerIndicator+viewpager指示器详解
前几天学习了ViewPager作为引导页和Tab的使用方法.后来也有根据不同的使用情况改用Fragment作为Tab的情况,以及ViewPager结合FragmentPagerAdapter的使用.今 ...