题意

有一棵 \(n\) 个节点且以 \(1\) 为根的树,把它复制成 \(m\) 个版本,有 \(q\) 次操作,每次对 \([l, r]\) 这些版本的 \(v\) 节点到根的路径收缩起来。

收缩 \(v\) 也就是把 \(v\) 到根路径上(除了根)所有点的父亲都变成根。

最后查询每个版本的每个点的 \(dep\) 之和。

数据范围

\(n, m, q \le 2 \times 10^5\)

题解

操作顺序是无所谓的,我们假设操作了点集 \(S\) ,那么最后被缩上去的点其实就是 \(\{S, root\}\) 构成虚树经过的节点。

每个点的深度其实它原来的深度减去它到根(除了根与根的儿子)被缩的点的个数。

考虑祖先对它的贡献是比较麻烦的,我们不妨考虑它对于祖先的贡献,其实就是每个深度 \(\ge 2\) 的节点的子树 \(size\) 之和。

那么我们把操作离线,只需要动态维护虚树经过所有点的权值和。

这其实是一个经典的动态虚树的问题,按照 \(dfs\) 序,用 std :: set 维护当前的点集,假设插入点为 \(k\) 找到它的前驱 \(l\) 与后继 \(r\) ,令 \(\mathrm{LCA}(l, k), \mathrm{LCA}(r, k)\) 深度较大点为 \(f\) ,那么这次新产生的路径是 \((k, f)\) 的路径(注意 \(f\) 原来就是存在于虚树中的,需要去掉),删除是类似的。

注意可能一个点被缩多次,我们需要利用 std :: multiset ,然后每次插入删除的时候查找是否还存在即可。

复杂度是 \(\mathcal O((n + q) \log n + m)\) 的。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; typedef long long ll;
typedef pair<int, int> PII; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("1954.in", "r", stdin);
freopen ("1954.out", "w", stdout);
#endif
} const int N = 2e5 + 1e3; vector<int> G[N]; ll ans = 0, sum[N]; int n, m, q, dep[N], anc[N][20], Log2[N], sz[N], dfn[N]; void Dfs_Init(int u, int fa = 0) {
static int clk = 0; dfn[u] = ++ clk;
dep[u] = dep[anc[u][0] = fa] + 1;
ans += dep[u]; sz[u] = 1;
for (int v : G[u]) if (v != fa) Dfs_Init(v, u), sz[u] += sz[v];
} void Get_Sum(int u, int fa = 0) {
sum[u] = sum[fa] + (dep[u] > 1) * sz[u];
for (int v : G[u]) if (v != fa) Get_Sum(v, u);
} struct Cmp {
inline bool operator () (const int &lhs, const int &rhs) { return dfn[lhs] < dfn[rhs]; }
}; vector<int> add[N], del[N]; multiset<int, Cmp> S; inline int Lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
int gap = dep[x] - dep[y];
For (i, 0, Log2[gap])
if (gap >> i & 1) x = anc[x][i];
if (x == y) return x;
Fordown (i, Log2[dep[x]], 0)
if (anc[x][i] != anc[y][i]) x = anc[x][i], y = anc[y][i];
return anc[x][0];
} int Find(int x) {
PII res; auto it = S.upper_bound(x);
if (it != S.end()) {
int tmp = Lca(*it, x); chkmax(res, {dep[tmp], tmp});
}
if (it != S.begin()) {
int tmp = Lca(*prev(it), x); chkmax(res, {dep[tmp], tmp});
}
return res.second ? res.second : x;
} int main () { File(); n = read(); m = read(); q = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v); G[v].push_back(u);
} while (q --) {
int l = read(), r = read(), v = read();
add[l].push_back(v); del[r + 1].push_back(v);
} dep[0] = -1; Dfs_Init(1); Get_Sum(1); For (i, 2, n) Log2[i] = Log2[i >> 1] + 1;
For (j, 1, Log2[n]) For (i, 1, n)
anc[i][j] = anc[anc[i][j - 1]][j - 1]; S.insert(1);
For (i, 1, m) {
for (int x : add[i]) {
if (S.find(x) == S.end())
ans -= sum[x] - sum[Find(x)];
S.insert(x);
}
for (int x : del[i]) {
S.erase(S.find(x));
if (S.find(x) == S.end())
ans += sum[x] - sum[Find(x)];
}
printf ("%lld%c", ans, i == iend ? '\n' : ' ');
} return 0; }

hihoCoder #1954 : 压缩树(虚树)的更多相关文章

  1. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

  2. [SDOI2018]战略游戏(圆方树+虚树)

    喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...

  3. 51Nod1868 彩色树 虚树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1868.html 题目传送门 - 51Nod1868 题意 给定一颗 $n$个点的树,每个点一个 $[ ...

  4. Codechef Sad Pairs——圆方树+虚树+树上差分

    SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...

  5. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  6. Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树

    https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...

  7. BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)

    题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...

  8. UOJ.87.mx的仙人掌(圆方树 虚树)(未AC)

    题目链接 本代码10分(感觉速度还行..). 建圆方树,预处理一些东西.对询问建虚树. 对于虚树上的圆点直接做:对于方点特判,枚举其所有儿子,如果子节点不在该方点代表的环中,跳到那个点并更新其val, ...

  9. 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】

    题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...

随机推荐

  1. 初步认识Swiper_前端交互控制神器_滚动3D切换等特效简单制作

    前言: 本人在项目的工作中负责研发,页面及交互基本都是交给前端去做的.以前前端写的东西大概都知道,都是一些JS,CSS和HTML等的一些基本控制,都懂!但是今天前端突然做了一个具有特殊效果的DOM:页 ...

  2. 【转载】 Sqlserver限制最大占用内存

    在Sqlserver数据库管理软件中,Sqlserver对系统内存的管理原则是:按需分配,并且分配完成后为了查询有更好的性能,并不会立即自动释放内存,数据取出后,还会一直占用着内存,所以在Sqlser ...

  3. Linux基本命令操作

    3.1  Linux终端介绍.Shell提示符.Bash基本语法 3.1.1  登录LINUX终端 两种终端仿真器:1.GNOME桌面的GHOME Terminal : 2.KDE桌面的Konsole ...

  4. WPF 自定义 ImageButton

    控件源码: public class ImageButton : Button    {        public ImageButton() {        } public string No ...

  5. 调用链监控 CAT 之 URL埋点实践

    URL监控埋点作用 一个http请求来了之后,会自动打点,能够记录每个url的访问情况,并将以此请求后续的调用链路串起来,可以在cat上查看logview 可以在cat Transaction及Eve ...

  6. 策略模式 Strategy 政策Policy 行为型 设计模式(二十五)

    策略模式 Strategy   与策略相关的常见词汇有:营销策略.折扣策略.教学策略.记忆策略.学习策略.... “策略”意味着分情况讨论,而不是一概而论 面对不同年龄段的人,面对不同的商品,必然将会 ...

  7. css——行内元素和块级元素的具体区别与行内块元素

    (学习笔记) 行内元素(inline)和块级元素(block)都是display属性的值.要知道行内元素和块级元素的区别,首先要了解他们的特性. 行内元素的特性:“行内”,顾名思义,在一行之内,所以相 ...

  8. Nginx支持 React browser router

    修改nginx配置文件,添加try_file配置如下,即可实现对 React browser router 的支持. location / { root /var/www/mysite; try_fi ...

  9. 重建程序员能力(3)-asp.net MVC框架增加Controller

        MVC在微软中提供的框架目前只是发现是asp.net用.另 8年前,我做了个MVC的Windows APP框架如果有兴趣我日后会介绍给大家,欢迎大家关注.MVC的概念网站上有很多,大家去查阅一 ...

  10. 基于Odoo框架的开源在线客服系统

    cs_base 开源客服系统,基于 Odoo 的客服模块 cs_base 是在强大的 Odoo 框架的基础上实现的一个在线客服应用 基础模块包含完整的 Web 在线客服的接入,坐席管理等,通过扩展可方 ...