题目大意:

给定平面上的一些点,求这些点的一个\(LIS\),并且还需要满足下列式子最小:

\[\sum_{i=1}^{n-1}(a[i+1].x-a[i].x)*(a[i+1].y-a[i].y)
\]

题解:

比较巧妙的一道题。

首先我们需要找出一个性质,我们先令\(dp[i]\)表示以\(i\)点结尾的\(LIS\),然后这些\(LIS\)相同的点在平面上是横坐标递增,纵坐标递减的,下面我们说的转移点的顺序都是按照这个顺序来的。

然后我们在观察转移,我们令两个转移点\(j\)和\(k\),若\(k\)比\(j\)更优,那么有:

\[dp[k]+(a[i].x-a[k].x)*(a[i].y-a[k].y)\geq dp[j]+(a[i].x-a[j].x)*(a[i].y-a[j].y)
\]

\[a[i].x*(a[j].y-a[k].y)+a[i].y*(a[j].x-a[k].x)\geq dp[j]-dp[k]+a[j].x*a[j].y-a[k].x*a[k].y
\]

\[A*a[i].x+B*a[i].y\geq C
\]

可以看出,这其实是一个半平面,结合上面的性质,对于一排待转移点,更优的转移是一段前缀或者一段后缀,这启发我们这道题中有决策单调性。

但是这个东西还有一个条件就是\(a[i].x\geq a[j].x\ \ a[i].y\geq a[j].y\),这个东西其实我们发现合法的转移点也是一段连续的区间,这启发我们在外面线段树分治解决这个限制。

对于决策单调性的部分,我们可以令\(k\)是\(j\)的后面一个点,那么上面的\(A\)是负的\(B\)是正的,所以合法的区域在直线上方,按照这个做决策单调性就好了。

代码

#include<bits/stdc++.h>
#define M 1000009
#define N 200009
using namespace std;
typedef long long ll;
vector<int>vec[N],now;
vector<int>::iterator it;
int n,T,dp[N];
ll f[N],ans;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
struct BIT{
int tr[M];
inline void add(int x,int y){
while(x<=T)tr[x]=max(tr[x],y),x+=x&-x;
}
inline int query(int x){
int ans=0;
while(x)ans=max(ans,tr[x]),x-=x&-x;
return ans;
}
}T1;
struct point{
int x,y;
inline bool operator <(const point &b)const{
if(x!=b.x)return x<b.x;
else return y<b.y;
}
}a[N];
struct seg{
#define ls tr[cnt].l
#define rs tr[cnt].r
int rot,tott;
struct node{
int l,r;
vector<int>nw;
}tr[N<<1];
void build(int &cnt,int l,int r){
cnt=++tott;tr[cnt].l=tr[cnt].r=0;
tr[cnt].nw.clear();
if(l==r)return;
int mid=(l+r)>>1;
build(ls,l,mid);build(rs,mid+1,r);
}
inline void init(){
tott=0;
build(rot,0,now.size()-1);
}
inline void upd(int cnt,int l,int r,int id){
if(a[id].x>=a[now[r]].x&&a[id].y>=a[now[l]].y){
tr[cnt].nw.push_back(id);
return;
}
if(a[id].x<a[now[l]].x||a[id].y<a[now[r]].y)return;
if(l==r)return;
int mid=(l+r)>>1;
upd(ls,l,mid,id);upd(rs,mid+1,r,id);
}
inline void _upd(int tag,int l,int r,int L,int R){
if(l>r)return;
int no=tr[tag].nw[(l+r)>>1];
ll biu=1e18,tg=0;
for(int i=L;i<=R;++i){
int id=now[i];
ll x=f[id]+1ll*(a[no].x-a[id].x)*(a[no].y-a[id].y);
if(x<biu){
biu=x;
tg=i;
}
}
f[no]=min(f[no],biu);
int mid=(l+r)>>1;
_upd(tag,l,mid-1,tg,R);
_upd(tag,mid+1,r,L,tg);
}
inline void work(int id){
upd(rot,0,now.size()-1,id);
}
void solve(int cnt,int l,int r){
_upd(cnt,0,tr[cnt].nw.size()-1,l,r);
if(l==r)return;
int mid=(l+r)>>1;
solve(ls,l,mid);solve(rs,mid+1,r);
}
inline void solve(){
solve(rot,0,now.size()-1);
}
#undef ls
#undef rs
}T2;
int main(){
n=rd();T=rd();
for(int i=1;i<=n;++i){
a[i].x=rd();a[i].y=rd();
}
sort(a+1,a+n+1);
int maxx=0;
for(int i=1;i<=n;++i){
dp[i]=T1.query(a[i].y)+1;
T1.add(a[i].y,dp[i]);
vec[dp[i]].push_back(i);
maxx=max(maxx,dp[i]);
}
memset(f,0x3f,sizeof(f));
for(it=vec[1].begin();it!=vec[1].end();++it){
int x=*it;
f[x]=1ll*a[x].x*a[x].y;
}
for(int i=2;i<=maxx;++i){
now=vec[i-1];
T2.init();
for(it=vec[i].begin();it!=vec[i].end();++it){
int x=*it;
T2.work(x);
}
T2.solve();
}
ans=1e18;
for(it=vec[maxx].begin();it!=vec[maxx].end();++it){
int x=*it;
ans=min(ans,f[x]+1ll*(T-a[x].x)*(T-a[x].y));
}
cout<<ans;
return 0;
}

[USACO19FEB]Mowing Mischief的更多相关文章

  1. 解题报告:luogu P5543 [USACO19FEB]The Great Revegetation S

    题目链接:P5543 [USACO19FEB]The Great Revegetation S 好坑啊,都身败名裂了. 思路一: 考虑染色法,跑一遍搜所就好了,不给代码了. 思路二: 考虑并查集,我想 ...

  2. P2034 选择数字 / P2627 [USACO11OPEN]Mowing the Lawn G

    Link 题目描述 给定一行 \(n\) 个非负整数 \(a[1]..a[n]\) .现在你可以选择其中若干个数,但不能有超过 \(k\) 个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入 ...

  3. [USACO19FEB]Moorio Kart

    题目 我们的神仙教练在考试里放了这道题,当时我非常惊讶啊 背包是\(O(n^3)\)的吧明明是带根号的好吧,那既然要优化的话 NTT!什么时候我们教练会在考试里放多项式了 模数\(1e9+7\)? 任 ...

  4. P5242 [USACO19FEB]Cow Dating

    题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...

  5. [USACO19FEB]Cow Dating

    Luogu5242 通过观察数据,我们可以发现,右端点的取值是单调递增的.于是,我们可以极限一波,用一个双指针法,类似于队列. 右端点的取值满足以下公式: (1-p1)(1-p2)..(1-pn) * ...

  6. [USACO19FEB]Moorio Kart(DP)

    Luogu5243 题解 即O(N^2)暴力统计出每个森林的路径,从ctgn个集合中各选出一个数,使得长度>=Y的方案数. 用背包统计.具体实现: \(dp[i+j][0]\leftarrow ...

  7. Mowing the Lawn【线性dp + 单调队列优化】

    题目链接:https://ac.nowcoder.com/acm/contest/2652/G 题目大意:与上一篇博客 烽火传递 差不多. 1.一共n头羊,若超过m头连续的羊在一起,就会集体罢工,每头 ...

  8. P5541 [USACO19FEB]Sleepy Cow Herding

    ri,被黄题虐. 思路:贪心?? 提交:2次 错因:没有特判 题解: 先排序. 最小代价:固定区间长度为\(n\),我们扫一遍数组看区间最多包含几个数,设为 \(mx\) ,答案就是\(n-mx+1\ ...

  9. [USACO19FEB]Cow Dating——找规律

    原题戳这里 题解 显然原题等价于让我们求这个式子\(\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)的最大值是 ...

随机推荐

  1. 模板引擎artTemplate的使用

    1.引入template文件 <script src = js/template-native.js></script> 2.写模板 <script type=" ...

  2. SAP MM A工厂下的PR可以转成B工厂下的PO?

    SAP MM A工厂下的PR可以转成B工厂下的PO? 答案是可能的,这也是SAP标准行为之一. 如下图采购申请单据, PR中的Plant是GENL.该PR 已经转成了PO,如上图. 看这个PO,工厂代 ...

  3. 五一出门必备的手机APP神器 让你瞬间大开眼界

    如今我们手机上有各种各样的软件,但是比较实用的又有哪些呢?所以每次大家都会花上很久的时间去查找满意的软件吧!今天就给大家送上一波福利,因为五一小长假就要到来了,说不定大家会使用到呢! 轻颜相机 轻颜相 ...

  4. 【English】十一、一般疑问句

    一.一般疑问句定义 参考:英语语法中的一般疑问句和特殊疑问句的区别   英语一般疑问句句型结构 能用yes / no(或相当于yes / no)回答的问句. 二.一般疑问句的句子结构,三种 be动词: ...

  5. 使用 phpstudy 搭建本地测试环境

    最近在为另一个部门配置一个多语言的网站,因为之前他们已经做过 英文和中文两种语言,这次帮他们添加其它几种语言,从GitLab 上拉下来的代码,是php环境做的,需要在本地跑起来,做完测试通过后再一次性 ...

  6. iBatis第二章:搭建一个简单的iBatis开发环境

    使用 iBatis 框架开发的基本步骤如下:1.新建项目(iBatis是持久层框架,可以运用到java工程或者web工程都可以) 这里我们建立一个 web 工程测试. 2.导入相应的框架 jar 包 ...

  7. nginx平滑升级(1.14--1.15)

    查看旧版nginx编译参数 [root@localhost yum.repos.d]# nginx -V nginx version: nginx/1.14.2 built by gcc 4.8.5 ...

  8. Linux学习历程——Centos 7 账户管理命令(用户组篇)groupadd groupmod groupdel

    一.命令介绍 groupadd:创建用户组 groupmod:修改用户组属性 groupdel:删除用户组 ---------------------------------------------- ...

  9. ios定义数组和字典快捷方式

    //标准写法 NSNumber * number = [NSNumber numberWithInt:1]; NSArray * array = [NSArray arrayWithObjects:@ ...

  10. Webstorm 2017.3激活破解

    之前尝试过各种激活破解办法,不过随着版本的不断升级,激活信息都失效了(毕竟咱不是通过正常途径激活的),只能重新激活.而且难度越来越大,记得早先网上有人分享激活码,激活的server地址,破解程序等等, ...