Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Note:

  • There may be more than one LIS combination, it is only necessary for you to return the length.
  • Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

这道题让我们求最长递增子串 Longest Increasing Subsequence 的长度,简称 LIS 的长度。我最早接触到这道题是在 LintCode 上,可参见我之前的博客 Longest Increasing Subsequence,那道题写的解法略微复杂,下面来看其他的一些解法。首先来看一种动态规划 Dynamic Programming 的解法,这种解法的时间复杂度为 O(n2),类似 brute force 的解法,维护一个一维 dp 数组,其中 dp[i] 表示以 nums[i] 为结尾的最长递增子串的长度,对于每一个 nums[i],从第一个数再搜索到i,如果发现某个数小于 nums[i],更新 dp[i],更新方法为 dp[i] = max(dp[i], dp[j] + 1),即比较当前 dp[i] 的值和那个小于 num[i] 的数的 dp 值加1的大小,就这样不断的更新 dp 数组,到最后 dp 数组中最大的值就是我们要返回的 LIS 的长度,参见代码如下:
解法一:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(), );
int res = ;
for (int i = ; i < nums.size(); ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] > nums[j]) {
dp[i] = max(dp[i], dp[j] + );
}
}
res = max(res, dp[i]);
}
return res;
}
};

下面来看一种优化时间复杂度到 O(nlgn) 的解法,这里用到了二分查找法,所以才能加快运行时间哇。思路是,先建立一个数组 ends,把首元素放进去,然后比较之后的元素,如果遍历到的新元素比 ends 数组中的首元素小的话,替换首元素为此新元素,如果遍历到的新元素比 ends 数组中的末尾元素还大的话,将此新元素添加到 ends 数组末尾(注意不覆盖原末尾元素)。如果遍历到的新元素比 ends 数组首元素大,比尾元素小时,此时用二分查找法找到第一个不小于此新元素的位置,覆盖掉位置的原来的数字,以此类推直至遍历完整个 nums 数组,此时 ends 数组的长度就是要求的LIS的长度,特别注意的是 ends 数组的值可能不是一个真实的 LIS,比如若输入数组 nums 为 {4, 2, 4, 5, 3, 7},那么算完后的 ends 数组为 {2, 3, 5, 7},可以发现它不是一个原数组的 LIS,只是长度相等而已,千万要注意这点。参见代码如下:

解法二:

class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.empty()) return ;
vector<int> ends{nums[]};
for (auto a : nums) {
if (a < ends[]) ends[] = a;
else if (a > ends.back()) ends.push_back(a);
else {
int left = , right = ends.size();
while (left < right) {
int mid = left + (right - left) / ;
if (ends[mid] < a) left = mid + ;
else right = mid;
}
ends[right] = a;
}
}
return ends.size();
}
};

我们来看一种思路更清晰的二分查找法,跟上面那种方法很类似,思路是先建立一个空的 dp 数组,然后开始遍历原数组,对于每一个遍历到的数字,用二分查找法在 dp 数组找第一个不小于它的数字,如果这个数字不存在,那么直接在 dp 数组后面加上遍历到的数字,如果存在,则将这个数字更新为当前遍历到的数字,最后返回 dp 数组的长度即可,注意的是,跟上面的方法一样,特别注意的是 dp 数组的值可能不是一个真实的 LIS。参见代码如下:

解法三:

class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp;
for (int i = ; i < nums.size(); ++i) {
int left = , right = dp.size();
while (left < right) {
int mid = left + (right - left) / ;
if (dp[mid] < nums[i]) left = mid + ;
else right = mid;
}
if (right >= dp.size()) dp.push_back(nums[i]);
else dp[right] = nums[i];
}
return dp.size();
}
};

下面来看两种比较 tricky 的解法,利用到了 C++ 中 STL 的 lower_bound 函数,lower_bound 返回数组中第一个不小于指定值的元素,跟上面的算法类似,还需要一个一维数组v,然后对于遍历到的 nums 中每一个元素,找其 lower_bound,如果没有 lower_bound,说明新元素比一维数组的尾元素还要大,直接添加到数组v中,跟解法二的思路相同了。如果有 lower_bound,说明新元素不是最大的,将其 lower_bound 替换为新元素,这个过程跟算法二的二分查找法的部分实现相同功能,最后也是返回数组v的长度,注意数组v也不一定是真实的 LIS,参见代码如下:

解法四:

class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> v;
for (auto a : nums) {
auto it = lower_bound(v.begin(), v.end(), a);
if (it == v.end()) v.push_back(a);
else *it = a;
}
       return v.size();
}
};

既然能用 lower_bound,那么 upper_bound 就耐不住寂寞了,也要出来解个题。upper_bound 是返回数组中第一个大于指定值的元素,和 lower_bound 的区别时,它不能返回和指定值相等的元素,那么当新进来的数和数组中尾元素一样大时,upper_bound 无法返回这个元素,那么按算法三的处理方法是加到数组中,这样就不是严格的递增子串了,所以要做个处理,在处理每个新进来的元素时,先判断数组v中有无此元素,有的话直接跳过,这样就避免了相同数字的情况,参见代码如下:

解法五:

class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> v;
for (auto a : nums) {
if (find(v.begin(), v.end(), a) != v.end()) continue;
auto it = upper_bound(v.begin(), v.end(), a);
if (it == v.end()) v.push_back(a);
else *it = a;
}
return v.size();
}
};

还有一种稍微复杂点的方法,参见我的另一篇博客 Longest Increasing Subsequence,那是 LintCode 上的题,但是有点不同的是,那道题让求的 LIS 不是严格的递增的,允许相同元素存在。

Github 同步地址:

https://github.com/grandyang/leetcode/issues/300

类似题目:

Increasing Triplet Subsequence

Russian Doll Envelopes

Maximum Length of Pair Chain

Number of Longest Increasing Subsequence

Minimum ASCII Delete Sum for Two Strings

参考资料:

https://leetcode.com/problems/longest-increasing-subsequence/

https://leetcode.com/problems/longest-increasing-subsequence/discuss/74825/Short-Java-solution-using-DP-O(n-log-n)

https://leetcode.com/problems/longest-increasing-subsequence/discuss/74848/9-lines-C%2B%2B-code-with-O(NlogN)-complexity

https://leetcode.com/problems/longest-increasing-subsequence/discuss/74824/JavaPython-Binary-search-O(nlogn)-time-with-explanation

https://leetcode.com/problems/longest-increasing-subsequence/discuss/74989/C%2B%2B-Typical-DP-N2-solution-and-NLogN-solution-from-GeekForGeek

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Longest Increasing Subsequence 最长递增子序列的更多相关文章

  1. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  2. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  3. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  4. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  5. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  6. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  7. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  8. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  9. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

随机推荐

  1. 自己手写的自动完成js类

    在web开发中,为了提高用户体验,会经常用到输入框的自动完成功能,不仅帮助用户进行快速输入,最重要的是帮助那些“记不全要输入什么”的用户进行选择.这个功能有很多插件已经实现了,为了适应项目的特殊需求, ...

  2. Angular2 小贴士 NgModule 模块

    angular2 具有了模块的概念,响应了后台程序的号召,高内聚 低耦合.模块就是用来进行封装,进行高内聚  低耦合的功能. 其实各人认为ng2 的模块和.net的工程类似,如果要使用模块中定义的功能 ...

  3. .NET正则表达式基础入门

    这是我第一次写的博客,个人觉得十分不容易.以前看别人写的博客文字十分流畅,到自己来写却发现十分困难,还是感谢那些为技术而奉献自己力量的人吧. 本教程编写之前,博主阅读了<正则指引>这本入门 ...

  4. VNC软件的安装及使用方法说明

    本篇仅为作业... 实验课程:Linux系统 指导老师:刘臣奇 实验机器:联想y410p 实验时间:2016年9月11日 学生学号:140815 姓名:杨文乾 在一台机器安装viewer的同时,在另一 ...

  5. 初学DDD-领域驱动设计

    这几天刚开始学习DDD,看了几篇大神的文章,现在只是知道了几个名词,还没有详细的学习.结合自己的工作经历,说说自己的看法,请各位大神多多指点. 最开始用的比较多的是以数据库表建立模型驱动开发.后来发现 ...

  6. 《C#微信开发系列(Top)-微信开发完整学习路线》

    年前就答应要将微信开发的学习路线整理给到大家,但是因为年后回来这段时间学校还有公司那边有很多事情需要兼顾,所以没能及时更新文章.今天特地花时间整理了下,话不多说,上图,希望对大家的学习有所帮助哈. 如 ...

  7. 提示用户升级浏览器代码 低于ie9的浏览器提示

    一般想做一些酷炫的网站都有个烦恼,那就是兼容ie浏览器,好在现在使用ie的也越来越少,微软也转战edge浏览器. 使用 Bootstrap经常用js插件可以模拟兼容旧版本的浏览器(bsie 鄙视IE) ...

  8. 利用BI搭建零售业数据信息平台

    某百货公司是全市规模最大的以零售为主.多元化经营的股份制商业企业.拥有员工数千人,经营国内外品牌2300余种,年商品销售额逾10亿人元. 销售体量如此庞大的企业近几年在IT建设上出现了问题,集团内部的 ...

  9. 使用 Web API 模拟其他用户

    模拟的要求 模拟可代表另一个 Microsoft Dynamics CRM 用户,用于执行业务逻辑(代码)以便提供所需功能或服务,它使用模拟用户的相应角色和基于对象的安全性.这项技术很有必要,因为 M ...

  10. Android中使用ImageViewSwitcher实现图片切换轮播导航效果

    前面写过了使用ViewFlipper和ViewPager实现屏幕中视图切换的效果(ViewPager未实现轮播)附链接: Android中使用ViewFlipper实现屏幕切换 Android中使用V ...