一,互斥锁,同步锁

进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,

竞争带来的结果就是错乱,如何控制,就是加锁处理

part1:多个进程共享同一打印终端

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import os,time
def work():
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid()) if __name__ == '__main__':
for i in range(3):
p=Process(target=work)
p.start()

并发运行,效率高,但竞争同一打印终端,带来了打印错乱

#由并发变成了串行,牺牲了运行效率,但避免了竞争
from multiprocessing import Process,Lock
import os,time
def work(lock):
lock.acquire()
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid())
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,))
p.start()

加锁:由并发变成了串行,牺牲了运行效率,但避免了竞争

part2:多个进程共享同一文件

文件当数据库,模拟抢票

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db.txt'))
print('\033[43m剩余票数%s\033[0m' %dic['count']) def get():
dic=json.load(open('db.txt'))
time.sleep(0.1) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) #模拟写数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('\033[43m购票成功\033[0m') def task(lock):
search()
get()
if __name__ == '__main__':
lock=Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()

并发运行,效率高,但竞争写同一文件,数据写入错乱

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db.txt'))
print('\033[43m剩余票数%s\033[0m' %dic['count']) def get():
dic=json.load(open('db.txt'))
time.sleep(0.1) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) #模拟写数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('\033[43m购票成功\033[0m') def task(lock):
search()
lock.acquire()
get()
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()

加锁:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全

总结:

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低
2.需要自己加锁处理

为此mutiprocessing模块为我们提供了基于消息的IPC通信机制:队列和管道。
1 队列和管道都是将数据存放于内存中
2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

二,进程的其他属性

注意:在windows中Process()必须放到# if __name__ == '__main__':下

Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module.
If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources).
This is the reason for hiding calls to Process() inside if __name__ == "__main__"
since statements inside this if-statement will not get called upon import.
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。
如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。
这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。

详细解释

创建并开启子进程的两种方式

#开进程的方法一:
import time
import random
from multiprocessing import Process
def piao(name):
print('%s piaoing' %name)
time.sleep(random.randrange(1,5))
print('%s piao end' %name) p1=Process(target=piao,args=('egon',)) #必须加,号
p2=Process(target=piao,args=('alex',))
p3=Process(target=piao,args=('wupeqi',))
p4=Process(target=piao,args=('yuanhao',)) p1.start()
p2.start()
p3.start()
p4.start()
print('主线程')

方法一

#开进程的方法二:
import time
import random
from multiprocessing import Process class Piao(Process):
def __init__(self,name):
super().__init__()
self.name=name
def run(self):
print('%s piaoing' %self.name) time.sleep(random.randrange(1,5))
print('%s piao end' %self.name) p1=Piao('egon')
p2=Piao('alex')
p3=Piao('wupeiqi')
p4=Piao('yuanhao') p1.start() #start会自动调用run
p2.start()
p3.start()
p4.start()
print('主线程')

方法二

练习1:把上周所学的socket通信变成并发的形式

from socket import *
from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5) def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start()

server端

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))

多个client端

每来一个客户端,都在服务端开启一个进程,如果并发来一个万个客户端,要开启一万个进程吗,你自己尝试着在你自己的机器上开启一万个,10万个进程试一试。
解决方法:进程池

这么实现有没有问题??? 

Process对象的join方法

from multiprocessing import Process
import time
import random class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__()
def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name) p=Piao('egon')
p.start()
p.join(0.0001) #等待p停止,等0.0001秒就不再等了
print('开始')

join:主进程等,等待子进程结束

from multiprocessing import Process
import time
import random
def piao(name):
print('%s is piaoing' %name)
time.sleep(random.randint(1,3))
print('%s is piao end' %name) p1=Process(target=piao,args=('egon',))
p2=Process(target=piao,args=('alex',))
p3=Process(target=piao,args=('yuanhao',))
p4=Process(target=piao,args=('wupeiqi',)) p1.start()
p2.start()
p3.start()
p4.start() #有的同学会有疑问:既然join是等待进程结束,那么我像下面这样写,进程不就又变成串行的了吗?
#当然不是了,必须明确:p.join()是让谁等?
#很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p, #详细解析如下:
#进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了
#而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键
#join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待
# 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间
p1.join()
p2.join()
p3.join()
p4.join() print('主线程') #上述启动进程与join进程可以简写为
# p_l=[p1,p2,p3,p4]
#
# for p in p_l:
# p.start()
#
# for p in p_l:
# p.join()

有了join,程序不就是串行了吗???

Process对象的其他方法或属性(了解)

#进程对象的其他方法一:terminate,is_alive
from multiprocessing import Process
import time
import random class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__() def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,5))
print('%s is piao end' %self.name) p1=Piao('egon1')
p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True print('开始')
print(p1.is_alive()) #结果为False

terminate与is_alive

from multiprocessing import Process
import time
import random
class Piao(Process):
def __init__(self,name):
# self.name=name
# super().__init__() #Process的__init__方法会执行self.name=Piao-1,
# #所以加到这里,会覆盖我们的self.name=name #为我们开启的进程设置名字的做法
super().__init__()
self.name=name def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name) p=Piao('egon')
p.start()
print('开始')
print(p.pid) #查看pid

name与pid

三,队列queue

进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的

 创建队列的类(底层就是以管道和锁定的方式实现)

1 Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 

 参数介绍:

1 maxsize是队列中允许最大项数,省略则无大小限制。    

  方法介绍:

    主要方法:
1 q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
2 q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
3
4 q.get_nowait():同q.get(False)
5 q.put_nowait():同q.put(False)
6
7 q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
8 q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
9 q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
    其他方法(了解):
1 q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞
2 q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
3 q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为

  应用:

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
''' from multiprocessing import Process,Queue
import time
q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
print(q.full()) #满了 print(q.get())
print(q.get())
print(q.get())
print(q.empty()) #空了

四,生产者消费者

进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的

 创建队列的类(底层就是以管道和锁定的方式实现)

1 Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 

 参数介绍:

1 maxsize是队列中允许最大项数,省略则无大小限制。    

  方法介绍:

    主要方法:
1 q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
2 q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
3
4 q.get_nowait():同q.get(False)
5 q.put_nowait():同q.put(False)
6
7 q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
8 q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
9 q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
    其他方法(了解):
1 q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞
2 q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
3 q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为

  应用:

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
''' from multiprocessing import Process,Queue
import time
q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
print(q.full()) #满了 print(q.get())
print(q.get())
print(q.get())
print(q.empty()) #空了

    生产者消费者模型

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

    为什么要使用生产者和消费者模式

在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

    什么是生产者消费者模式

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

基于队列实现生产者消费者模型

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主')

此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.put(None) #发送结束信号
if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主')

生产者在生产完毕后发送结束信号None

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(2):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start() p1.join()
q.put(None) #发送结束信号
print('主')

主进程在生产者生产完毕后发送结束信号None

但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(name,q):
for i in range(2):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,)) #开始
p1.start()
p2.start()
p3.start()
c1.start() p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
p2.join()
p3.join()
q.put(None) #有几个生产者就应该发送几次结束信号None
q.put(None) #发送结束信号
q.put(None) #发送结束信号
print('主')

有几个生产者就需要发送几次结束信号:相当low

其实我们的思路无非是发送结束信号而已,有另外一种队列提供了这种机制

   #JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

   #参数介绍:
maxsize是队列中允许最大项数,省略则无大小限制。
  #方法介绍:
JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:
q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常
q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止
from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了 def producer(name,q):
for i in range(10):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.join() if __name__ == '__main__':
q=JoinableQueue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,))
c1.daemon=True
c2.daemon=True #开始
p_l=[p1,p2,p3,c1,c2]
for p in p_l:
p.start() p1.join()
p2.join()
p3.join()
print('主') #主进程等--->p1,p2,p3等---->c1,c2
#p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
#因而c1,c2也没有存在的价值了,应该随着主进程的结束而结束,所以设置成守护进程

View

 
 

python并发编程之多进程(二):互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型的更多相关文章

  1. python并发编程之多进程1--(互斥锁与进程间的通信)

    一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行 ...

  2. python并发编程之多进程1互斥锁与进程间的通信

    一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行 ...

  3. python并发编程之多进程二

    一,multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

  4. Python进阶(4)_进程与线程 (python并发编程之多进程)

    一.python并发编程之多进程 1.1 multiprocessing模块介绍 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大 ...

  5. Python并发编程__多进程

    Python并发编程_多进程 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大 ...

  6. python并发编程02 /多进程、进程的创建、进程PID、join方法、进程对象属性、守护进程

    python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 目录 python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 ...

  7. Python并发编程06 /阻塞、异步调用/同步调用、异步回调函数、线程queue、事件event、协程

    Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件event.协程 目录 Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件 ...

  8. 二 python并发编程之多进程-重点

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

  9. 二 python并发编程之多进程实现

    一 multiprocessing模块介绍 二 process类的介绍 三 process类的使用 四 守护进程 五 进程同步(锁) 六 队列 七 管道 八 共享数据 九 信号量 十 事件 十一 进程 ...

随机推荐

  1. mysql数据库管理工具navicat for mysql怎么用

    mysql数据库管理工具navicat for mysql,对于不怎么喜欢图形界面或者不太方便使用SQL的时候.我们可以通过用这个图形界面数据库管理工具来管理mysql,本经验咗嚛就简单介绍一下怎么用 ...

  2. mysql-高性能索引策略

    原文转自:http://www.cnblogs.com/happyflyingpig/p/7655762.html 独立索引: 独立索引是指索引列不能是表达式的一部分,也不能是函数的参数 例1: SE ...

  3. _2_head_中标签

    创:20_3_2017修:5_4_2017 什么是title标签? --title   页面名(双) -- 整个html的页面名字,相当于一本书的书名 <title>北门吹雪</ti ...

  4. Java客户端工具选择:HTML?Swing?XML?

    整理下面的文章是因为个人觉得写的很好,关于java的客户端了解也并不是太多.看了下面的文章觉得很有必要贴出来,方便自己以后了解java客户端编程. Java软件设计师和管理人员经常会面临这样的难题:在 ...

  5. Eclipse设置代码自动提示

    Eclipse只需几步简单的设置就可以像idea那样代码自动提示了,喜欢的小伙伴可以赶紧动手设置,提升效率. 第一步:打开Eclipse --> Window --> Preference ...

  6. docker搭建私服

    拉registry镜像 假设在192.168.100.17服务器上搭建私服 docker pull registry docker run -d -v /data/docker/registry:/v ...

  7. wepy 初探

    此篇文章仅仅是对自身项目的一个总结,并对一些遇到的问题给出解决方法 一,安装 wepy安装 二,使用 wepy的文档已经写的很清晰了,遇到的问题大多在issues和wiki中也能找到,具体就不概述了, ...

  8. android .9图片的制作

    android .9PNG图片制作 在android开发的过程中,我们经常因为没有好的美工图片失真,这样使界面看起来要逊色很多,有的时候可能我们会想在drawable-hdpi,ldpi,mdpi下放 ...

  9. 【转】<string> <string.h> <cstring>的区别

    #include < string.h > void main() { string aaa = " abcsd d " ; printf( " lookin ...

  10. Ready!Api创建使用DataSource和DataSourceLoop的循环测试用例

    step one:在testSuite(假如没有,新建一个)下新建一个testcase,并新建一个DataSource(注意:创建数据源时,一定要把request中所有的传参字段都放到数据源字段中&l ...