圆方树简介(UOJ30:CF Round #278 Tourists)
我写这篇博客的原因
证明我也是学过圆方树的
顺便存存代码
前置技能
双联通分量:点双
然后就没辣
圆方树
建立
新建一个图
定义原图中的所有点为圆点
对于每个点双联通分量(只有两个点的也算)
建立一个方点,向所有的点双内的点连边
性质
- 一定是个森林
- 每个点双有唯一的方点
- 圆点方点相间分布,相同点不相邻
等等
例子 1
题面
求可以出现在两点之间的简单路路径上的点的最大权值,不带修改
分析
考虑用圆方树来解决
设圆点权值为本身,方点权值为点双中的最大权值
那么就是树上的路径最大权值
例子 2
还是上面的题,可以修改一个点的权值
类似题UOJ
用老方法
每次修改时更改圆点连接的所有方点
没了?
不存在的,这样每次修改是\(O(n)\)的,容易被卡
换一种定义:方点权值不包括它的父亲圆点
那么每次修改就只要修改圆点的父亲
注意如果\(lca\)是方点,还要算上它父亲方点的权值
堆+线段树(zkw辣)+树剖+圆方树+tarjan
UOJ代码
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(4e5 + 5);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
struct Edge{
int next[_], first[_], to[_], cnt;
IL void Init(){
Fill(first, -1);
}
IL void Add(RG int u, RG int v){
next[cnt] = first[u], to[cnt] = v, first[u] = cnt++;
}
} G1, G2;
struct Segment{
int mn[_ << 2], M;
IL void Init(RG int n){
Fill(mn, 127);
for(M = 1; M < n; M <<= 1);
}
IL void Update(RG int x, RG int y){
x += M - 1, mn[x] = y;
for(x >>= 1; x; x >>= 1) mn[x] = min(mn[x << 1], mn[x << 1 | 1]);
}
IL int Query(RG int l, RG int r){
RG int ret = 2e9;
for(l += M - 2, r += M; l ^ r ^ 1; l >>= 1, r >>= 1){
if(~l & 1) ret = min(ret, mn[l ^ 1]);
if(r & 1) ret = min(ret, mn[r ^ 1]);
}
return ret;
}
} T;
struct Heap{
priority_queue <int> Q1, Q2;
IL void Push(RG int x){
Q1.push(-x);
}
IL void Del(RG int x){
Q2.push(-x);
}
IL int Top(){
while(!Q2.empty() && Q1.top() == Q2.top()) Q1.pop(), Q2.pop();
return -Q1.top();
}
} Q[_];
int tmp, n, m, q, val[_], dfn[_], low[_], Index, S[_];
int size[_], top[_], fa[_], deep[_], son[_];
IL void Tarjan(RG int u){
dfn[u] = low[u] = ++Index, S[++S[0]] = u;
for(RG int e = G1.first[u]; e != -1; e = G1.next[e]){
RG int v = G1.to[e], x;
if(!dfn[v]){
Tarjan(v), low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u]){
val[++n] = 2e9, x = 0;
do{
x = S[S[0]--];
G2.Add(n, x), G2.Add(x, n);
} while(x != v);
G2.Add(n, u), G2.Add(u, n);
}
}
else low[u] = min(low[u], dfn[v]);
}
}
IL void Dfs1(RG int u){
size[u] = 1;
if(u <= tmp && fa[u]) Q[fa[u]].Push(val[u]);
for(RG int e = G2.first[u]; e != -1; e = G2.next[e]){
RG int v = G2.to[e];
if(size[v]) continue;
fa[v] = u, deep[v] = deep[u] + 1;
Dfs1(v);
size[u] += size[v];
if(size[v] > size[son[u]]) son[u] = v;
}
}
IL void Dfs2(RG int u, RG int Top){
dfn[u] = ++Index, top[u] = Top;
if(son[u]) Dfs2(son[u], Top);
for(RG int e = G2.first[u]; e != -1; e = G2.next[e])
if(!dfn[G2.to[e]]) Dfs2(G2.to[e], G2.to[e]);
}
IL int Query(RG int u, RG int v){
RG int ret = 2e9;
while(top[u] ^ top[v]){
if(deep[top[u]] > deep[top[v]]) swap(u, v);
ret = min(ret, T.Query(dfn[top[v]], dfn[v]));
v = fa[top[v]];
}
if(dfn[u] > dfn[v]) swap(u, v);
ret = min(ret, T.Query(dfn[u], dfn[v]));
if(u > tmp) ret = min(ret, val[fa[u]]);
return ret;
}
int main(RG int argc, RG char* argv[]){
G1.Init(), G2.Init();
tmp = n = Input(), m = Input(), q = Input();
for(RG int i = 1; i <= n; ++i) val[i] = Input();
for(RG int i = 1; i <= m; ++i){
RG int u = Input(), v = Input();
G1.Add(u, v), G1.Add(v, u);
}
for(RG int i = 1; i <= tmp; ++i) if(!dfn[i]) Tarjan(i);
Fill(dfn, 0), Index = 0, T.Init(n);
Dfs1(1), Dfs2(1, 1);
for(RG int i = 1; i <= n; ++i) T.Update(dfn[i], val[i]);
for(RG int i = tmp + 1; i <= n; ++i) T.Update(dfn[i], Q[i].Top());
for(RG int i = 1, a, b; i <= q; ++i){
RG char op; scanf(" %c", &op);
a = Input(), b = Input();
if(op == 'C'){
if(fa[a]) Q[fa[a]].Del(val[a]);
val[a] = b, T.Update(dfn[a], val[a]);
if(fa[a]) Q[fa[a]].Push(val[a]);
if(fa[a]) T.Update(dfn[fa[a]], Q[fa[a]].Top());
}
else printf("%d\n", Query(a, b));
}
return 0;
}
圆方树简介(UOJ30:CF Round #278 Tourists)的更多相关文章
- UOJ #30. [CF Round #278] Tourists
UOJ #30. [CF Round #278] Tourists 题目大意 : 有一张 \(n\) 个点, \(m\) 条边的无向图,每一个点有一个点权 \(a_i\) ,你需要支持两种操作,第一种 ...
- 圆方树总结 [uoj30]Tourists
圆方树总结 所谓圆方树就是把一张图变成一棵树. 怎么变啊qaq 这里盗一张图 简单来说就是给每一个点双新建一个点,然后连向这个点双中的每一个点.特殊的,把两个点互相连通的也视作一个点双. 我们把原来就 ...
- [CF Round #278] Tourists
给定一个n个点m条边的无向图,求图上的两点的所有的简单路径之间的最小边. 蓝链 $ n,m,q \leq 100000, w_i \leq 10 ^7$ Solution 考虑建立用缩点双来建立广义圆 ...
- uoj30【CF Round #278】Tourists(圆方树+树链剖分+可删除堆)
- 学习了一波圆方树 学习了一波点分治 学习了一波可删除堆(巧用 ? STL) 传送门: Icefox_zhx 注意看代码看怎么构建圆方树的. tips:tips:tips:圆方树内存记得开两倍 CO ...
- UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...
- 仙人掌 && 圆方树 && 虚树 总结
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- 仙人掌&圆方树
仙人掌&圆方树 Tags:图论 [x] [luogu4320]道路相遇 https://www.luogu.org/problemnew/show/P4320 [ ] [SDOI2018]战略 ...
- UOJ.87.mx的仙人掌(圆方树 虚树)(未AC)
题目链接 本代码10分(感觉速度还行..). 建圆方树,预处理一些东西.对询问建虚树. 对于虚树上的圆点直接做:对于方点特判,枚举其所有儿子,如果子节点不在该方点代表的环中,跳到那个点并更新其val, ...
随机推荐
- 针对Eclipse的maven Missing artifact com.microsoft.sqlserver:slqjdbc4:jar:4.0
maven 中添加sqlserver 出错,报错内容 maven Missing artifact com.microsoft.sqlserver 解决方法这里先下载好jar包 ,然后maven命令执 ...
- U盘制作centos7系统并安装
U盘刻录步骤 1.下载centos镜像(https://mirrors.aliyun.com/centos/7.4.1708/isos/x86_64/) 2.使用UltraISO刻录U盘启动系统 安装 ...
- CentOS下安装go语言编译环境
1.下载Go语言的安装包 这里给大家一个百度的分享连接http://pan.baidu.com/s/1qY3xPaG下载到CentOS的系统之中 $ tar -xzf go1.5.2.linux-xx ...
- markdown流程图画法小结
markdown流程图画法小结 markdown 画图 流程图 最简单的流程图为例 ```mermaid! graph TD A --> B //在没有(),[].{}等括号的情况之下,图标 ...
- js利用闭包封装自定义模块的几种方法
1.自定义模块: 具有特定功能的js文件 将所有的数据和功能都封装在一个函数的内部 只向外暴露一个包含有n个方法的对象或者函数 模块使用者只需要通过模块暴露的对象调用方法来实现相对应的功能 1.利用函 ...
- 静态编译程序 依赖于 Qt 和 Opencv 静态库 会出现 jpeg jpg 图像格式保存崩溃的情况,这是什么原因?
双方依赖的 jpeg 静态库源码版本冲突,重新静态编译库,都采用一致版本即可.
- UVA-818 dfs + 位运算
暴力枚举一些圆环,将这些圆环解开,看能否成为单链.判断单链的三个条件: 除了这些删除的圆环之外,其他圆环还连接着的圆环不能超过两个. 剩下的环没有连成圈. 剩下的圆环共分成m堆,每堆之间无连接,m必须 ...
- elasticsearch分词器Jcseg安装手册
Jcseg是什么? Jcseg是基于mmseg算法的一个轻量级中文分词器,同时集成了关键字提取,关键短语提取,关键句子提取和文章自动摘要等功能,并且提供了一个基于Jetty的web服务器,方便各大语言 ...
- Hama安装及示例运行
Hama介绍 Apache Hama是一个纯BSP(Bulk Synchronous Parallel)计算框架,模仿了Google的Pregel.用来处理大规模的科学计算,特别是矩阵和图计算. BS ...
- Http请求小结
1.Http请求:get方式 public void httpGet(String url,Map<String,Object> map) { try { String joint = p ...