Bzoj4555: [Tjoi2016&Heoi2016]求和
题面
Sol
推柿子
因为当\(j>i\)时\(S(i, j)=0\),所以有
\]
枚举\(j\)
\]
带入\(S(i, j)\)的公式
\]
\]
\(\sum_{i=0}^{n}(j-k)^i\)有公式求,然后跑\(NTT\)
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int Zsy(998244353);
const int _(4e5 + 5);
const int Phi(998244352);
const int G(3);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, A[_], B[_], N, l, r[_], fac[_], inv[_], mul[_], pw[_], ans;
IL int Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
}
IL void NTT(RG int* P, RG int opt){
for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG int W = Pow(G, Phi / (i << 1));
if(opt == -1) W = Pow(W, Zsy - 2);
for(RG int p = i << 1, j = 0; j < N; j += p)
for(RG int w = 1, k = 0; k < i; ++k, w = 1LL * w * W % Zsy){
RG int X = P[k + j], Y = 1LL * w * P[k + j + i] % Zsy;
P[k + j] = (X + Y) % Zsy, P[k + j + i] = (X - Y + Zsy) % Zsy;
}
}
if(opt == 1) return;
RG int Inv = Pow(N, Zsy - 2);
for(RG int i = 0; i < N; ++i) P[i] = 1LL * P[i] * Inv % Zsy;
}
IL void Mul(){
for(N = 1; N <= n + n; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
NTT(A, 1); NTT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = 1LL * A[i] * B[i] % Zsy;
NTT(A, -1);
}
int main(RG int argc, RG char* argv[]){
n = Input(), pw[0] = fac[0] = mul[0] = 1, mul[1] = n + 1;
for(RG int i = 1; i <= n; ++i){
fac[i] = 1LL * i * fac[i - 1] % Zsy;
pw[i] = 1LL * 2 * pw[i - 1] % Zsy;
if(i == 1) continue;
mul[i] = 1LL * (Pow(i, n + 1) - 1) * Pow(i - 1, Zsy - 2) % Zsy;
if(mul[i] < 0) mul[i] += Zsy;
}
inv[n] = Pow(fac[n], Zsy - 2);
for(RG int i = n - 1; ~i; --i) inv[i] = 1LL * inv[i + 1] * (i + 1) % Zsy;
for(RG int i = 0; i <= n; ++i){
A[i] = B[i] = inv[i];
if(i & 1) A[i] = Zsy - A[i];
B[i] = 1LL * mul[i] * inv[i] % Zsy;
}
Mul();
for(RG int i = 0; i <= n; ++i) (ans += 1LL * A[i] * pw[i] % Zsy * fac[i] % Zsy) %= Zsy;
printf("%d\n", ans);
return 0;
}
Bzoj4555: [Tjoi2016&Heoi2016]求和的更多相关文章
- [BZOJ4555 TJOI2016 HEOI2016 求和]
第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...
- [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 525 Solved: 418[Sub ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 315 Solved: 252 Des ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...
随机推荐
- [Python Study Notes]批量将ppt转换为pdf v1.0
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- [Python Study Notes]磁盘信息和IO性能
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- css页面布局之左侧定宽,右侧自适应
二列布局的特征是侧栏固定宽度,主栏自适应宽度.三列布局的特征是两侧两列固定宽度,中间列自适应宽度. 之所以将二列布局和三列布局写在一起,是因为二列布局可以看做去掉一个侧栏的三列布局,其布局的思想有异曲 ...
- 发送POST测试请求的若干方法
最近在工作中需要测试发送带Json格式body值的HTTP POST请求.起初,我在Linux环境下使用curl命令去发送请求,但是,在发送的过程中却遇到了一些问题,经过一段时间的摸索,发现了以下几种 ...
- CentOS7 修改网卡名称为eth0
前言 无论是RHEL 7.还是CentOS 7都使用了NetworkManager.service来进行网络管理,当然network服务还是可以继续使用的,但也将会是过渡期的残留品了. 除此之外7版本 ...
- phpstudy如何安装景安ssl证书 window下apache服务器网站https访问
1. 下载景安免费证书 https://www.zzidc.com/help/helpDetail?id=555 2.文件解压上传至服务器,位置自己决定 3. 调整apache配置 景安原文链接:ht ...
- Visual Studio 2017 发布 15.5 版本,百度网盘离线安装包下载。
Visual Studio 2017 15.5 版本已正式发布,同时发布的还有 Visual Studio for Mac 7.3 .此次更新包含主要性能改进,新特性以及 bug 修复.发行说明中文版 ...
- iOS中的定时器
据我所知,iOS中的定时器有两种.一个叫NSTimer,一个叫CADisplayLink.还有一种是使用GCD,不常用,这里就不介绍了. 下边说下两个定时器分别得用法: =============== ...
- Mysql引擎中MyISAM和InnoDB的区别有哪些?
简单的概括一下 InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和 ...
- 1.8 range
哈哈,前边忘了介绍这个知识点了,老是用人家,不介绍一下都不好意思了. range()函数是一个用来创建数字序列的函数. 问题来了,为什么要写函数? 封装代码啊,让使用者不需要关心具体业务逻辑是如何实现 ...