Bzoj4555: [Tjoi2016&Heoi2016]求和
题面
Sol
推柿子
因为当\(j>i\)时\(S(i, j)=0\),所以有
\]
枚举\(j\)
\]
带入\(S(i, j)\)的公式
\]
\]
\(\sum_{i=0}^{n}(j-k)^i\)有公式求,然后跑\(NTT\)
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int Zsy(998244353);
const int _(4e5 + 5);
const int Phi(998244352);
const int G(3);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, A[_], B[_], N, l, r[_], fac[_], inv[_], mul[_], pw[_], ans;
IL int Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
}
IL void NTT(RG int* P, RG int opt){
for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG int W = Pow(G, Phi / (i << 1));
if(opt == -1) W = Pow(W, Zsy - 2);
for(RG int p = i << 1, j = 0; j < N; j += p)
for(RG int w = 1, k = 0; k < i; ++k, w = 1LL * w * W % Zsy){
RG int X = P[k + j], Y = 1LL * w * P[k + j + i] % Zsy;
P[k + j] = (X + Y) % Zsy, P[k + j + i] = (X - Y + Zsy) % Zsy;
}
}
if(opt == 1) return;
RG int Inv = Pow(N, Zsy - 2);
for(RG int i = 0; i < N; ++i) P[i] = 1LL * P[i] * Inv % Zsy;
}
IL void Mul(){
for(N = 1; N <= n + n; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
NTT(A, 1); NTT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = 1LL * A[i] * B[i] % Zsy;
NTT(A, -1);
}
int main(RG int argc, RG char* argv[]){
n = Input(), pw[0] = fac[0] = mul[0] = 1, mul[1] = n + 1;
for(RG int i = 1; i <= n; ++i){
fac[i] = 1LL * i * fac[i - 1] % Zsy;
pw[i] = 1LL * 2 * pw[i - 1] % Zsy;
if(i == 1) continue;
mul[i] = 1LL * (Pow(i, n + 1) - 1) * Pow(i - 1, Zsy - 2) % Zsy;
if(mul[i] < 0) mul[i] += Zsy;
}
inv[n] = Pow(fac[n], Zsy - 2);
for(RG int i = n - 1; ~i; --i) inv[i] = 1LL * inv[i + 1] * (i + 1) % Zsy;
for(RG int i = 0; i <= n; ++i){
A[i] = B[i] = inv[i];
if(i & 1) A[i] = Zsy - A[i];
B[i] = 1LL * mul[i] * inv[i] % Zsy;
}
Mul();
for(RG int i = 0; i <= n; ++i) (ans += 1LL * A[i] * pw[i] % Zsy * fac[i] % Zsy) %= Zsy;
printf("%d\n", ans);
return 0;
}
Bzoj4555: [Tjoi2016&Heoi2016]求和的更多相关文章
- [BZOJ4555 TJOI2016 HEOI2016 求和]
第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...
- [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 525 Solved: 418[Sub ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 315 Solved: 252 Des ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...
随机推荐
- 企业Nginx+Keepalived双主架构案例实战
通过上一次课程的学习,我们知道Nginx+keepalived主从配置,始终有一台服务器处于空余状态,那如何更好的利用起来呢,我们需要借助Nginx+keepalived双主架构来实现,如下图通过改装 ...
- Scrapy-简单介绍
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设计的, ...
- PPPoE拨号流程
PPPoE(Point to Point Protocol over Ethernet,基于以太网的点对点协议)的工作流程包含发现(Discovery)和会话(Session)两个阶段,发现阶段是无状 ...
- Java经典编程题50道之十一
有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? public class Example11 { public static void main(String[] arg ...
- return的新思考
<!DOCTYPE html><html lang="en"> <head> <meta charset="UTF-8" ...
- Angular利用@ViewChild在父组件执行子组件的方法
代码如下: @Component({ selector: 'my-app', template: ` <step-bar #stepBar></step-bar> ` }) e ...
- UVALive - 4329 Ping pong 树状数组
这题不是一眼题,值得做. 思路: 假设第个选手作为裁判,定义表示在裁判左边的中的能力值小于他的人数,表示裁判右边的中的能力值小于他的人数,那么可以组织场比赛. 那么现在考虑如何求得和数组.根据的定义知 ...
- HDU - 1043 A* + 康托 [kuangbin带你飞]专题二
这题我第一次用的bfs + ELFhash,直接TLE,又换成bfs + 康托还是TLE,5000ms都过不了!!我一直调试,还是TLE,我才发觉应该是方法的问题. 今天早上起床怒学了一波A*算法,因 ...
- this指针随笔
在类中,非常量成员函数中,this指针为指向非常量的常量指针Class* this const 在常量成员函数中,this指针为const class* this const,为指向常量的常量指针
- C语言老司机学Python (四)
字符串格式化: 可以使用类似c语言中sprintf函数的方法进行格式化,但是函数名称是print() 如:print('常量 PI 的值近似为:%5.3f.' % var_PI) 注意var_PI ...