5152. Brute-force Algorithm EXTREME

Problem code: BFALG

Please click here to download a PDF version of the contest problems. The problem is problem B in the PDF. But the data limits is slightly modified: 1≤P≤1000000 in the original description, but in this EXTREME version, 1≤P≤1000000000.

=========(EDIT, Francky)===============

Professor Brute is not good at algorithm design. Once he was asked to solve a path finding problem. He worked on it for several days and finally came up with the following algorithm:

Function Find(integer n,function func)
If n=1
For i = 1 to a do func()
Elseif n=2
For i = 1 to b do func()
Else Find(n-1,Find(n-2,func))
Function Main
Find(n,funny)

Any fool but Brute knows that the function “funny” will be called too many times. Brute wants to investigate the number of times the function will be called, but he is too lazy to do it.
Now your task is to calculate how many times the function “funny” will be called, for the given a, b and n. Because the answer may be too large, you should output the answer module by P.

Input

There are multiple test cases. The first line of the input contains an integer T, meaning the number of the test cases.
For each test cases, there are four integers a, b, P and n in a single line. You can assume that 1≤n≤1000000000, 1≤P≤1000000, 0≤a, b<1000000.

Output

For each test case, output the answer with case number in a single line.

Example

Input:
3
3 4 10 3
4 5 13 5
3 2 19 100 Output:
Case #1: 2
Case #2: 11
Case #3: 12 公式稍微列一下就可以发现是
次数 a,b
1: 1,0
2: 0,1
3: 1,1
4: 1,2
5: 2,3....
可以看出结果与斐波那契数列有关,
是a^f(n-3)*b^f(n-2),
但是斐波那契数列是用指数形式增长的,很快就会超出64位,而且直接运算肯定会超时,
那么
1.为了解决时间问题,使用矩阵快速幂,
{f(n-1),fn, {0,1, {fn,fn+f(n-1),
0, 0, }* 1,1, }= 0, 0}
2.为了解决斐波那契数字过大问题,有公式
a^c%P=a^(c%phi(P)+phi(P))%P
其中phi是欧拉函数 耽误时间主要原因
1 一开始想要把1-1e6所有欧拉函数值都求出来
2
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
int a,b,P,n;
ll s[2][2],t[2][2];
ll phi;
void calphisub(){
int tP=P;
phi =P;
if((tP&1)==0){
phi>>=1;
while((tP&1)==0){
tP>>=1;
}
}
for(int i=3;i*i<=tP;i+=2)
{
if(tP%i==0)
{
phi=phi/i*(i-1);
while(tP%i==0)
{
tP/=i;
}
}
}
if(tP>1)phi=phi/tP*(tP-1);
}
void multi(ll a[2][2],ll b[2][2] ,ll c[2][2] ){
ll tmp[2][2];
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
tmp[i][j]=0;
for(int k=0;k<2;k++){
tmp[i][j]+=a[i][k]*b[k][j];
if(tmp[i][j]>phi){
tmp[i][j]=tmp[i][j]%phi+phi;
}
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
c[i][j]=tmp[i][j];
}
}
}
void init(){
s[0][0]=1,s[0][1]=1,s[1][0]=0,s[1][1]=0;
t[0][0]=0,t[0][1]=1,t[1][0]=1,t[1][1]=1;
}
void qpow(int n){
while(n>0){
if(n%2==1){
multi(s,t,s);
}
multi(t,t,t);
n/=2;
}
}
ll qpow2(int n,ll sub){
ll ans=1;
while(n>0){
if((n&1)!=0){
ans=ans*sub%P;
}
sub=sub*sub%P;
n/=2;
}
return ans;
}
void getfab(int n,ll& fn,ll& fminus){
if(n==1){
fn=0;fminus=1;
}
else if(n==2){
fn=1;fminus=0;
}
else {
init();
qpow(n-3);
fminus=s[0][0];
fn=s[0][1];
}
}
int main(){
int T;
scanf("%d",&T);
for(int i=0;i<T;i++){
scanf("%d%d%d%d",&a,&b,&P,&n);
if(P==1){ printf("Case #%d: 0\n",i+1);continue;}
ll ta,tb;
calphisub();
getfab(n,tb,ta);
ll pa=qpow2(ta,a)%P;
ll pb=qpow2(tb,b)%P;
ll ans=pa*pb%P;
printf("Case #%d: %I64d\n",i+1,ans);
}
}

  

  

SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1的更多相关文章

  1. hdu 2044:一只小蜜蜂...(水题,斐波那契数列)

    一只小蜜蜂... Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepte ...

  2. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  3. HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  4. hdu number number number 斐波那契数列 思维

    http://acm.hdu.edu.cn/showproblem.php?pid=6198 F0=0,F1=1的斐波那契数列. 给定K,问最小的不能被k个数组合而成的数是什么. 赛后才突然醒悟,只要 ...

  5. HDU 4639 Hehe(字符串处理,斐波纳契数列,找规律)

    题目 //每次for循环的时候总是会忘记最后一段,真是白痴.... //连续的he的个数 种数 //0 1 //1 1 //2 2 //3 3 //4 5 //5 8 //…… …… //斐波纳契数列 ...

  6. HDU 4549 M斐波那契数列(矩阵快速幂)

    题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...

  7. HDU 1316 (斐波那契数列,大数相加,大数比较大小)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...

  8. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  9. 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)

    I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...

随机推荐

  1. 263. Ugly Number(判断是否是丑数 剑指offer34)

    Write a program to check whether a given number is an ugly number. Ugly numbers are positive numbers ...

  2. 84. Largest Rectangle in Histogram(直方图最大面积 hard)

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  3. 【转】C#操作xml

    XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨平台的,依赖于内 ...

  4. python 内建函数isinstance的用法以及与type的区别

    isinstance是Python中的一个内建函数 语法: isinstance(object, classinfo)   如果参数object是classinfo的实例,或者object是class ...

  5. 【VS Error】VS2008在编译时出现:Error 15 Cannot register assembly

    现象: 在visual studio 2008在编译类库时提示如下错误: Error 15 Cannot register assembly "D:\01_Work\02_SVN\OCRpl ...

  6. path.join()和path.resolve()的区别

    现在写代码的时候有时候使用path.join(__dirname,'dist')有时候用path.resolve(__dirname,'dist'),都是能拼接处来一个绝对路径,但是具体有什么区别呢? ...

  7. java内存解析

    ass BirthDate{ private int day; private int month; private int year; public BirthDate(int d;int m,in ...

  8. 20145331《Java程序设计》第1周学习总结

    20145331<Java程序设计>第1周学习总结 教材学习内容总结 第一章 1.java的三大平台分别为java SE.java EE.java ME,其中java SE是基础. 2.j ...

  9. openwrt下定义软件包的依赖关系类型

    在openwrt下软件包的依赖关系由DEPENDS:=来指定 第一种依赖关系类型为只有将依赖的软件包手动选上,当前的软件包就会自动被选中,用法为DEPENDS:=package_name 第二种依赖关 ...

  10. The OAuth 2.0 Authorization Framework: Bearer Token Usage

    https://tools.ietf.org/html/rfc6750 1.2. Terminology Bearer Token A security token with the property ...