[NOI2011]阿狸的打字机 --- AC自动机 + 树状数组
[NOI2011] 阿狸的打字机
题目描述:
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。
打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。经阿狸研究发现,这个打字机是这样工作的:
·输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。
·按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。
·按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。
例如,阿狸输入aPaPBbP,纸上被打印的字符如下:
a aa ab
我们把纸上打印出来的字符串从1开始顺序编号,一直到n。
打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,
在小键盘上输入两个数(x,y)(其中\(1 <= x,y <= n\)),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。
阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
输入格式:
输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。
第二行包含一个整数m,表示询问个数。
接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。
输出格式:
输出m行,其中第i行包含一个整数,表示第i个询问的答案。
数据范围:
\(n,m<= 10^{5}\)
首先,如果模拟按键的过程(暂时无视询问),把所有操作后的串都提取出来
可以形成一棵Trie树
题目中又正好提到了匹配,那么不妨继续建出AC自动机
如果对AC自动机有了解,那么不难知道一个点及其fail后继有多少点被标记,那么它代表的串出现的次数就是被标记的点数
因此,如果把AC自动机的fail树拿出来,原问题可以转化为:
维护一棵树,支持:
给定一堆被标记的点,查询一个点的子树内被标记的点的个数
这是不可做的
但是,原问题有特殊性
这些被标记的点是1个1个标记的,因此,我们可以离线根据x排序
那么,现在我们可以再模拟一遍,当模拟到x次操作时,就可以回答跟x有关的回答了。
注意到原问题转化后相当于要支持:单点修改,子树查询
拿树状数组维护dfs序就能解决这个问题。
复杂度O(\(m \log n\))
[NOI2011]阿狸的打字机 --- AC自动机 + 树状数组的更多相关文章
- 【BZOJ】2434: [Noi2011]阿狸的打字机 AC自动机+树状数组+DFS序
[题意]阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小写 ...
- BZOJ2434: [Noi2011]阿狸的打字机(AC自动机 树状数组)
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4140 Solved: 2276[Submit][Status][Discuss] Descript ...
- [BZOJ2434][Noi2011]阿狸的打字机 AC自动机+树状数组+离线
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2434 题目中这种多个串匹配的问题,一下子就想到了AC自动机.然后发现如果要建立AC自动机, ...
- BZOJ.2434.[NOI2011]阿狸的打字机(AC自动机 树状数组 DFS序)
题目链接 首先不需要存储每个字符串,可以将所有输入的字符依次存进Trie树,对于每个'P',记录该串结束的位置在哪,以及当前节点对应的是第几个串(当前串即根节点到当前节点):对于'B',只需向上跳一个 ...
- bzoj 2434 阿狸的打字机 - Aho-Corasick自动机 - 树状数组
题目传送门 传送站I 传送站II 题目大意 阿狸有一个打字机,它有3种键: 向缓冲区追加小写字母 P:打印当前缓冲区(缓冲区不变) B:删除缓冲区中最后一个字符 然后多次询问第$x$个被打印出来的串在 ...
- 洛谷P2414 阿狸的打字机 [NOI2011] AC自动机+树状数组/线段树
正解:AC自动机+树状数组/线段树 解题报告: 传送门! 这道题,首先想到暴力思路还是不难的,首先看到y有那么多个,菜鸡如我还不怎么会可持久化之类的,那就直接排个序什么的然后按顺序做就好,这样听说有7 ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组
[BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...
随机推荐
- 51nod1149 Pi的递推式
基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x ...
- Let's Encrypt 免费通配 https 签名证书 安装方法2 ,安卓签名无法认证!
Let's Encrypt 免费通配 https 签名证书 安装方法 按照上文 配置完毕后你会发现 在pc浏览器中正常访问,在手机浏览器中无法认证 你只需要安装一个或多个中级证书 1.查看Nginx ...
- 从urllib和urllib2基础到一个简单抓取网页图片的小爬虫
urllib最常用的两大功能(个人理解urllib用于辅助urllib2) 1.urllib.urlopen() 2. urllib.urlencode() #适当的编码,可用于后面的post提交 ...
- DIDM源码分析
DIDM源码分析 版本来源:GitHub上Opendaylight DIDM项目 参考资料来源:DIDM:Developer Guide 概述 DIDM是设备标识与驱动管理(Device Identi ...
- Sqlmap注入技巧收集整理
TIP1 当我们注射的时候,判断注入 http://site/script?id=10http://site/script?id=11-1 # 相当于 id=10http://site/script? ...
- 一文轻松搞懂redis集群原理及搭建与使用
今天早上由于zookeeper和redis集群不在同一虚拟机导致出了点很小错误(人为),所以这里总结一下redis集群的搭建以便日后所需同时也希望能对你有所帮助. 笔主这里使用的是Centos7.如果 ...
- Linux kernel kfifo分析【转】
转自:https://zohead.com/archives/linux-kernel-kfifo/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/li ...
- 无状态Http
无状态的根本原因 浏览器和服务器使用socket通信,服务器将请求结果返回给浏览器后,会关闭当前socket连接.而且服务器会在处理页面完毕后销毁页面对象. 应用层面的原因 浏览器和服务器之间通信都遵 ...
- HTTP 请求 的方法Util
HTTP请求 的一系列方法总结 /** * *******************************传统请求--开始************************************** ...
- 修改系统时间为UTC时间
1 拷贝时区文件 cp /usr/share/zoneinfo/Etc/GMT /etc/localtime 2 修改/etc/profile 在最后添加 TZ="Etc/GMT" ...