\(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\)

题目大意 : 给出一个长度为 \(n\) 序列 \(A\),和 \(q\) 次询问,对于每一次询问给出两个数 \(l, x\) ,你需要计算在前缀和 \(A[1, l]\) 中选取若干个数,使得它们 \(xor\) 起来的结果等于 \(x\) 的方案数

$n , q \leq 10^5 \ 0 \leq A_i \leq 2^{20} $

解题思路 :

首先考虑离线,发现将询问按照 \(l\) 排序之后,询问每一个 \(l\) 时都可以构造出关于前缀$ A[1,l] $的线性基

考虑如果要在前缀 \(A[1,l]\) 中选取若干个数表示出 \(x\), 那么线性基中的元素必然能表示出 \(x\)

与此同时,如果线性基能表示出 \(x\)

那么对于每一个在前缀 \(A[1, l]\) 但不在线性基中元素 \(A_i\) 线性基都能表示出 \((x\ xor\ A_i)\)

所以线性基外的元素都可以选或者不选,那么方案数就是 \(2^{l -size}\) 其中 \(size\) 指的是线性基的大小

那么只需要对于询问离线,边向线性基内插入数边回答询问,判断是否能被线性基表示并算出线性基的大小即可

判断数是否能被线性基表示 : 对于数每一个有 \(1\) 的二进制位,\(xor\) 上线性基的对应位,判断是否变成了 \(0\)

求线性基的大小 : 加入元素的时候通过判断是否加入成功来维护

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define P 1000000007
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
int a[200005], ans[200005], Bit[25], n, m, tot;
struct Query{ int l, x, id; } q[200005];
inline bool cmp(Query A, Query B){ return A.l < B.l; }
inline ll Pow(ll a, ll b){
ll ans = 1;
for(; b; b >>= 1, a = a * a % P)
if(b & 1) ans = ans * a % P;
return ans;
}
inline void ins(int x){
for(int i = 19; ~i; i--) if((1 << i) & x){
if(!Bit[i]){ Bit[i] = x; return; }
x ^= Bit[i];
}
}
inline void Answer(Query now){
int x = now.x, lim = now.l, id = now.id, cnt = 0;
for(int i = 19; ~i; i--) if(Bit[i]){
cnt++;
if((1 << i) & x) x ^= Bit[i];
}
if(x) ans[id] = 0; else ans[id] = Pow(2, lim - cnt);
}
int main(){
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1; i <= m; i++){
int l, x;
read(l), read(x), q[i] = (Query){l, x, i};
}
int p = 1;
sort(q + 1, q + m + 1, cmp);
for(; !q[p].l && p <= m; p++)
if(!q[p].x) ans[q[p].id] = 1; else ans[q[p].id] = 0;
for(int i = 1; i <= n; i++){
ins(a[i]);
while(q[p].l == i && p <= m) Answer(q[p++]);
}
for(int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}

Codeforces 959 F. Mahmoud and Ehab and yet another xor task的更多相关文章

  1. Codeforces 959 D Mahmoud and Ehab and another array construction task

    Discription Mahmoud has an array a consisting of n integers. He asked Ehab to find another arrayb of ...

  2. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  3. 959F - Mahmoud and Ehab and yet another xor task xor+dp(递推形)+离线

    959F - Mahmoud and Ehab and yet another xor task xor+dp+离线 题意 给出 n个值和q个询问,询问l,x,表示前l个数字子序列的异或和为x的子序列 ...

  4. Codeforces 959 E Mahmoud and Ehab and the xor-MST

    Discription Ehab is interested in the bitwise-xor operation and the special graphs. Mahmoud gave him ...

  5. [CF959F]Mahmoud and Ehab and yet another xor task题解

    搞n个线性基,然后每次在上一次的基础上插入读入的数,前缀和线性基,或者说珂持久化线性基. 然后一个num数组记录当时线性基里有多少数 然后每次前缀操作一下就珂以了 代码 #include <cs ...

  6. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  7. D. Mahmoud and Ehab and another array construction task 因子分界模板+贪心+数学

    D. Mahmoud and Ehab and another array construction task 因子分解模板 题意 给出一个原序列a 找出一个字典序大于a的序列b,使得任意 \(i!= ...

  8. codeforces-473D Mahmoud and Ehab and another array construction task (素数筛法+贪心)

    题目传送门 题目大意:先提供一个数组,让你造一个数组,这个数组的要求是 1 各元素之间都互质  2  字典序大于等于原数组  3 每一个元素都大于2 思路: 1.两个数互质的意思就是没有公因子.所以每 ...

  9. CF 959 E. Mahmoud and Ehab and the xor-MST

    E. Mahmoud and Ehab and the xor-MST https://codeforces.com/contest/959/problem/E 分析: 每个点x应该和x ^ lowb ...

随机推荐

  1. 【CodeForces】576 C. Points on Plane

    [题目]C. Points on Plane [题意]给定坐标系中n个点的坐标(范围[0,10^6]),求一种 [ 连边形成链后总长度<=2.5*10^9 ] 的方案.n<=10^6. [ ...

  2. HOMEWORK-2

    没什么超乎常人的技能吧,我想.关于C的学习之前一直是自学,上了大学也是吃老底(上一篇提到了),因为这个学期一直在学matlab,C除了帮人写过作业教过课自己也没写点什么. 指针的概念还算清楚,毕竟经常 ...

  3. IntelliJ Idea key shortcuts

    >Default explaination Official IntelliJ Idea 常用快捷键列表 Shortcuts Ctrl+Shift + Enter,语句完成 "!&qu ...

  4. 【转】E: Sub-process /usr/bin/dpkg returned an error code (1)

    原链接: jaryWang:E: Sub-process /usr/bin/dpkg returned an error code (1)错误解决 1.$ sudo mv /var/lib/dpkg/ ...

  5. vue-cli使用说明

    一.安装npm install -g vue-cli 推荐使用国内镜像 先设置cnpm npm install -g cnpm --registry=https://registry.npm.taob ...

  6. Paramiko使用

    1.下载安装 pycrypto-2.6.1.tar.gz (apt-get install python-dev) 解压,进入,python setup.py build[编译],python set ...

  7. F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解

    题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...

  8. thinkphp博客项目纪录

    项目地址:http://files.cnblogs.com/files/wordblog/blog.zip

  9. jq时间日期插件的使用-datetimepicker

    分三步  首先引入各种包 然后搞哥容器用id  然后加入一段js 实例: 下载:http://files.cnblogs.com/files/wordblog/datetimepicker-maste ...

  10. docker之安装和基本使用(一)

    前言 开始折腾docker. 主要概念 容器:独立运行的一个或一组应用,与其他应用完全独立. 镜像:用于创建 Docker容器的模板. 仓库:用于收纳镜像文件,可以理解为代码控制中的代码仓库 注意: ...