【UOJ #110】【APIO 2015】Bali Sculptures
http://uoj.ac/problem/110
这道题subtask4和subtask5是不同的算法。
主要思想都是从高位到低位贪心确定答案。
对于subtask4,n比较小,设\(f(i,j)\)表示前\(i\)个雕塑分成\(j\)组能否满足当前答案,最后检查\(f(n,A\sim B)\)是否有值为true的,时间复杂度\(O(n^3\log\sum Y_i)\)。
对于subtask5,n比较大,但A=1,设\(f(i)\)表示前\(i\)个雕塑要满足当前答案最少能分成多少组,最后检查\(f(n)\)是否不大于B,时间复杂度\(O(n^2\log\sum Y_i)\)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 2003;
int n, A, B, Y[N];
ll sum[N], num = (1ll << 41) - 1;
namespace lalala {
bool f[N][N];
bool can(ll x) {
f[0][0] = true;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= B && j <= i; ++j) {
f[i][j] = false;
for (int k = i - 1; k >= 0; --k)
if (((sum[i] - sum[k]) | x) <= x && f[k][j - 1]) {
f[i][j] = true;
break;
}
}
for (int i = A; i <= B; ++i) if (f[n][i]) return true;
return false;
}
void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld\n", num);
}
}
namespace hahaha {
int f[N];
bool can(ll x) {
for (int i = 1; i <= n; ++i) {
f[i] = B + 1;
for (int j = i - 1; j >= 0; --j)
if (((sum[i] - sum[j]) | x) <= x && f[j] + 1 < f[i])
f[i] = f[j] + 1;
}
return f[n] <= B;
}
void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld\n", num);
}
}
int main() {
scanf("%d%d%d", &n, &A, &B);
for (int i = 1; i <= n; ++i) scanf("%d", Y + i), sum[i] = sum[i - 1] + Y[i];
if (A == 1) hahaha::solve();
else lalala::solve();
return 0;
}
【UOJ #110】【APIO 2015】Bali Sculptures的更多相关文章
- 【CTSC 2015】&【APIO 2015】酱油记
蒟蒻有幸参加了神犇云集的CTSC & APIO 2015,感觉真是被虐成傻逼了……这几天一直没更新博客,今天就来补一下吧~~(不过不是题解……) Day 0 从太原到北京现在坐高铁只需3小时= ...
- 【UOJ #112】【APIO 2015】Palembang Bridges
http://uoj.ac/problem/112 先扣掉在同一侧的情况. 当\(k=1\)时,桥建在所有位置的中位数. 当\(k=2\)时,对于每个居民\((S_i,T_i)\),这个居民只会走离\ ...
- 【BZOJ 4070】【APIO 2015】雅加达的摩天楼
http://www.lydsy.com/JudgeOnline/problem.php?id=4070 分块建图. 对每个\(P_i\)分类讨论,\(P_i>\sqrt N\)则直接连边,边数 ...
- 【SIGGRAPH 2015】【巫师3 狂猎 The Witcher 3: Wild Hunt 】顶级的开放世界游戏的实现技术。
[SIGGRAPH 2015][巫师3 狂猎 The Witcher 3: Wild Hunt ]顶级的开放世界游戏的实现技术 作者:西川善司 日文链接 http://www.4gamer.net/ ...
- 【MyEclipse 2015】 逆向破解实录系列【终】(纯研究)
声明 My Eclipse 2015 程序版权为Genuitec, L.L.C所有. My Eclipse 2015 的注册码.激活码等授权为Genuitec, L.L.C及其付费用户所有. 本文只从 ...
- 【MyEclipse 2015】 逆向破解实录系列【2】(纯研究)
声明 My Eclipse 2015 程序版权为Genuitec, L.L.C所有. My Eclipse 2015 的注册码.激活码等授权为Genuitec, L.L.C及其付费用户所有. 本文只从 ...
- 【CEDEC 2015】【夏日课堂】制作事宜技术篇,新手职员挑战VR Demo开发的真相
日文原文地址 http://www.4gamer.net/games/277/G027751/20150829002/ PS:CEDEC 2015的PPT有些要到10月才有下载,目前的都是记者照片修图 ...
- 【UOJ】67 新年的毒瘤 &【BZOJ】1123 BLO
[UOJ 67] 题目链接: 传送门 题解: 第一眼很懵逼……这什么鬼. 思考什么点复合条件……(o(>﹏<)o 1.树,也就是说还剩n-2条边,等价于要删去一个度数为m-n+2的点. 2 ...
- 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)
[UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...
随机推荐
- MDI窗体简单方法(调用,闪屏)
调用方式: RibbonForm mdishow = new RibbonForm(); //实例化 midshow.MdiParent = this; //设置在主窗体,以MDI的方式显示,关键属性 ...
- 下拉刷新和UITableView的section headerView冲突的原因分析与解决方案
UITableView:下拉刷新和上拉加载更多 [转载请注明出处] 本文将说明具有多个section的UITableView在使用下拉刷新机制时会遇到的问题及其解决方案. 工程地址在帖子最下方,只需要 ...
- 【leetcode 简单】第四十题 求众数
给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] 输出: 3 ...
- canvas h5制作写字板
<!DOCTYPE html><html><head> <meta charset="utf-8"> <script type ...
- javascript 中的 this 关键字详解
1.javascript 中 什么是 this? this 指的是当前行为执行的主体,或者是当前方法执行的主体 context:是当前行为或者方法执行的环境 实例: xx 去北京饭店吃东西:上下文是“ ...
- python作业高级FTP(第八周)
作业需求: 1. 用户加密认证 2. 多用户同时登陆 3. 每个用户有自己的家目录且只能访问自己的家目录 4. 对用户进行磁盘配额.不同用户配额可不同 5. 用户可以登陆server后,可切换目录 6 ...
- 生成验证码tp
js里拼接随机数 页面上链接 去掉后缀名
- 【Tomcat】 windows下注册tomcat服务以及设置jvm参数
注册服务: 1 >cd /d D:\Java\tomcat-7.0.57-Css\bin //进入目录 1 >service.bat install //注册服务,同理删除服务为 rem ...
- JSOI 2017 Round 1滚粗记
day0 到常州一中报道,吃了午饭,好像这次有小火锅. 然后下午听JYY讲线性规划...好神啊. 晚上去试机,机子上没有npp,只有linux下的codeblocks,敲起来一顿一顿的...后来被迫使 ...
- openjudge-NOI 2.6-1808 公共子序列
题目链接:http://noi.openjudge.cn/ch0206/1808/ 题解: 裸题…… #include<cstdio> #include<cstring> #d ...