http://uoj.ac/problem/110

这道题subtask4和subtask5是不同的算法。

主要思想都是从高位到低位贪心确定答案。

对于subtask4,n比较小,设\(f(i,j)\)表示前\(i\)个雕塑分成\(j\)组能否满足当前答案,最后检查\(f(n,A\sim B)\)是否有值为true的,时间复杂度\(O(n^3\log\sum Y_i)\)。

对于subtask5,n比较大,但A=1,设\(f(i)\)表示前\(i\)个雕塑要满足当前答案最少能分成多少组,最后检查\(f(n)\)是否不大于B,时间复杂度\(O(n^2\log\sum Y_i)\)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int N = 2003; int n, A, B, Y[N];
ll sum[N], num = (1ll << 41) - 1; namespace lalala {
bool f[N][N];
bool can(ll x) {
f[0][0] = true;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= B && j <= i; ++j) {
f[i][j] = false;
for (int k = i - 1; k >= 0; --k)
if (((sum[i] - sum[k]) | x) <= x && f[k][j - 1]) {
f[i][j] = true;
break;
}
}
for (int i = A; i <= B; ++i) if (f[n][i]) return true;
return false;
} void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld\n", num);
}
} namespace hahaha {
int f[N];
bool can(ll x) {
for (int i = 1; i <= n; ++i) {
f[i] = B + 1;
for (int j = i - 1; j >= 0; --j)
if (((sum[i] - sum[j]) | x) <= x && f[j] + 1 < f[i])
f[i] = f[j] + 1;
}
return f[n] <= B;
} void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld\n", num);
}
} int main() {
scanf("%d%d%d", &n, &A, &B);
for (int i = 1; i <= n; ++i) scanf("%d", Y + i), sum[i] = sum[i - 1] + Y[i]; if (A == 1) hahaha::solve();
else lalala::solve(); return 0;
}

【UOJ #110】【APIO 2015】Bali Sculptures的更多相关文章

  1. 【CTSC 2015】&【APIO 2015】酱油记

    蒟蒻有幸参加了神犇云集的CTSC & APIO 2015,感觉真是被虐成傻逼了……这几天一直没更新博客,今天就来补一下吧~~(不过不是题解……) Day 0 从太原到北京现在坐高铁只需3小时= ...

  2. 【UOJ #112】【APIO 2015】Palembang Bridges

    http://uoj.ac/problem/112 先扣掉在同一侧的情况. 当\(k=1\)时,桥建在所有位置的中位数. 当\(k=2\)时,对于每个居民\((S_i,T_i)\),这个居民只会走离\ ...

  3. 【BZOJ 4070】【APIO 2015】雅加达的摩天楼

    http://www.lydsy.com/JudgeOnline/problem.php?id=4070 分块建图. 对每个\(P_i\)分类讨论,\(P_i>\sqrt N\)则直接连边,边数 ...

  4. 【SIGGRAPH 2015】【巫师3 狂猎 The Witcher 3: Wild Hunt 】顶级的开放世界游戏的实现技术。

    [SIGGRAPH 2015][巫师3 狂猎 The Witcher 3: Wild Hunt ]顶级的开放世界游戏的实现技术 作者:西川善司 日文链接  http://www.4gamer.net/ ...

  5. 【MyEclipse 2015】 逆向破解实录系列【终】(纯研究)

    声明 My Eclipse 2015 程序版权为Genuitec, L.L.C所有. My Eclipse 2015 的注册码.激活码等授权为Genuitec, L.L.C及其付费用户所有. 本文只从 ...

  6. 【MyEclipse 2015】 逆向破解实录系列【2】(纯研究)

    声明 My Eclipse 2015 程序版权为Genuitec, L.L.C所有. My Eclipse 2015 的注册码.激活码等授权为Genuitec, L.L.C及其付费用户所有. 本文只从 ...

  7. 【CEDEC 2015】【夏日课堂】制作事宜技术篇,新手职员挑战VR Demo开发的真相

    日文原文地址 http://www.4gamer.net/games/277/G027751/20150829002/ PS:CEDEC 2015的PPT有些要到10月才有下载,目前的都是记者照片修图 ...

  8. 【UOJ】67 新年的毒瘤 &【BZOJ】1123 BLO

    [UOJ 67] 题目链接: 传送门 题解: 第一眼很懵逼……这什么鬼. 思考什么点复合条件……(o(>﹏<)o 1.树,也就是说还剩n-2条边,等价于要删去一个度数为m-n+2的点. 2 ...

  9. 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)

    [UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...

随机推荐

  1. 【BZOJ】4316: 小C的独立集 静态仙人掌

    [题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...

  2. Please move or remove them before you can merge

    在使用git pull时,经常会遇到报错: Please move or remove them before you can merge 这是因为本地有修改,与云端别人提交的修改冲突,又没有merg ...

  3. oozie与sqoop的简单案例

    1:拷贝模板 2:拷贝hive用的jar包 方式一: 3:编辑job.properties # # Licensed to the Apache Software Foundation (ASF) u ...

  4. Netty 入门初体验

    Netty简介 Netty是一款异步的事件驱动的网络应用程序框架,支持快速开发可维护的高性能的面向协议的服务器和客户端.Netty主要是对java 的 nio包进行的封装 为什么要使用 Netty 上 ...

  5. PHPMailer发送邮件(一)

    Github 地址:(已更新,适用于旧版) PHPMailer : https://github.com/PHPMailer/PHPMailer 一.基本要求 Web访问正常(apache可以正常访问 ...

  6. NYOJ 1063 生活的烦恼 (二叉树)

    题目链接 描述 生活的暑假刚集训开始,他要决心学好字典树,二叉树,线段树和各种树,但生活在OJ上刷题的时候就遇到了一个特别烦恼的问题.那当然就是他最喜欢的二二叉树咯!题目是这样的:给你一颗非空的二叉树 ...

  7. .net APIHelper client获取数据

    using Newtonsoft.Json; using System.Net.Http.Headers; public static class APIHepler { public static ...

  8. python3学习笔记.3.条件控制与循环

    1.条件控制 关键字 if.elif.else 一般形式如下: if 条件1: 结果1 elif 条件2: 结果2 else: 结果3 注意:条件后的:语句的缩进的是相同的   2.循环语句 关键字有 ...

  9. B - GuGuFishtion(莫比乌斯 欧拉函数 预处理mu函数的欧拉函数的模板)

    题目链接:https://cn.vjudge.net/contest/270608#problem/B 题目大意:题目中说,就是对欧拉函数的重新定义的一种函数的求和. 证明方法: AC代码: #inc ...

  10. Solaris 系统命令使用说明

    1. 查看进程  --  pgreproot@UA4300D-spa:~# pgrep fmd133095root@UA4300D-spa:~# pgrep -l fmd133095 fmdroot@ ...