题目传送门

Primitive Roots
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5434   Accepted: 3072

Description

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

  分析:

  一句话题意:求原根的个数。

  首先,如果知道原根的相关知识,那就可以直接上欧拉函数的板子了。关于原根的知识,请参考这里

  Code:

//It is made by HolseLee on 11th July 2018
//POJ 1284
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=1e5+;
int n,phi[N],top,q[];
bool vis[N];
void ready()
{
phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=,k;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])phi[k]=phi[i]*(q[j]-);
else {phi[k]=phi[i]*q[j];break;}
}
}
}
int main()
{
ios::sync_with_stdio(false);
ready();
while(cin>>n){
printf("%d\n",phi[n-]);}
return ;
}

POJ1284 Primitive Roots [欧拉函数,原根]的更多相关文章

  1. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...

  2. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  3. 【POJ1284】Primitive Roots 欧拉函数

    题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, .. ...

  4. poj1284(欧拉函数+原根)

    题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...

  5. poj1284:欧拉函数+原根

    何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...

  6. poj1284 && caioj 1159 欧拉函数1:原根

    这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...

  7. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  8. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...

  2. 用Tensorflow实现多层神经网络

    用Tensorflow实现多层神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 ReLU激活函数/L1范数 ...

  3. CSS3笔记-加强版

    属性选择器:   E[attr]只使用属性名,但没有确定任何属性值 E[attr="value"]指定属性名,并指定了该属性的属性值 E[attr~="value&quo ...

  4. Asp.Net Core 依赖注入默认DI,Autofac注入

    使用默认DI 修改Startup类方法ConfigureServices如下: public void ConfigureServices(IServiceCollection services) { ...

  5. DevExpress使用教程:GridView经验小结(官方中文文献经典资料技巧)

    下面是笔者自己总结的使用 DevExpress Gridview 的一些经验小结,分享给大家: 1.去除 GridView 头上的 "Drag a column header here to ...

  6. HTML5文件上传器,纯脚本无插件的客户端文件上传器---Uploader 文件上传器类

    概述 客户端完全基于JavaScript的 浏览器文件上传器,不需要任何浏览器插件,但需要和jQuery框架协同工作,支持超大文件上传,其算法是将一个超大文件切片成N个数据块依次提交给服务 端处理,由 ...

  7. Eng1—English daily notes

    English daily notes 2015年 4月 Phrases As a side note 作为附注,顺便说句题外话,和by the way意思相近,例句 As a side note, ...

  8. laravel前台html代码不显示

    后天向前台传输变量,如果能取到变量数据,还有代码,但是不显示图片 可以把{{}}换成{!!     !!}试试.

  9. JSP分页之结合Bootstrap分页插件进行简单分页

    结合Bootstrap的分页插件实现分页,其中策略是每次显示5个按钮,然后根据当前页的不同来进行不同的显示: 1. 当前页<3,如果当前页大于5页就显示前五页,不然就显示1~totalPage. ...

  10. oracle 归档模式、补充日志

    1.归档模式: Oracle数据库有联机重做日志,这个日志是记录对数据库所做的修改,比如插入,删除,更新数据等,对这些操作都会记录在联机重做日志里.一般数据库至少要有2个联机重做日志组.当一个联机重做 ...